File: wait_stuff.cpp

package info (click to toggle)
boost1.83 1.83.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 545,632 kB
  • sloc: cpp: 3,857,086; xml: 125,552; ansic: 34,414; python: 25,887; asm: 5,276; sh: 4,799; ada: 1,681; makefile: 1,629; perl: 1,212; pascal: 1,139; sql: 810; yacc: 478; ruby: 102; lisp: 24; csh: 6
file content (984 lines) | stat: -rw-r--r-- 37,707 bytes parent folder | download | duplicates (22)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
//          Copyright Nat Goodspeed 2015.
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)
//
#include <algorithm>
#include <cassert>
#include <chrono>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>

#include <boost/fiber/all.hpp>
#include <boost/variant/variant.hpp>
#include <boost/variant/get.hpp>

// These are wait_something() functions rather than when_something()
// functions. A big part of the point of the Fiber library is to model
// sequencing using the processor's instruction pointer rather than chains of
// callbacks. The future-oriented when_all() / when_any() functions are still
// based on chains of callbacks. With Fiber, we can do better.

/*****************************************************************************
*   Verbose
*****************************************************************************/
class Verbose {
public:
    Verbose( std::string const& d):
        desc( d) {
        std::cout << desc << " start" << std::endl;
    }

    ~Verbose() {
        std::cout << desc << " stop" << std::endl;
    }

    Verbose( Verbose const&) = delete;
    Verbose & operator=( Verbose const&) = delete;

private:
    const std::string desc;
};

/*****************************************************************************
*   Runner and Example
*****************************************************************************/
// collect and ultimately run every Example
class Runner {
    typedef std::vector< std::pair< std::string, std::function< void() > > >    function_list;

public:
    void add( std::string const& desc, std::function< void() > const& func) {
        functions_.push_back( function_list::value_type( desc, func) );
    }

    void run() {
        for ( function_list::value_type const& pair : functions_) {
            Verbose v( pair.first);
            pair.second();
        }
    }

private:
    function_list   functions_;
};

Runner runner;

// Example allows us to embed Runner::add() calls at module scope
struct Example {
    Example( Runner & runner, std::string const& desc, std::function< void() > const& func) {
        runner.add( desc, func);
    }
};

/*****************************************************************************
*   example task functions
*****************************************************************************/
//[wait_sleeper
template< typename T >
T sleeper_impl( T item, int ms, bool thrw = false) {
    std::ostringstream descb, funcb;
    descb << item;
    std::string desc( descb.str() );
    funcb << "  sleeper(" << item << ")";
    Verbose v( funcb.str() );

    boost::this_fiber::sleep_for( std::chrono::milliseconds( ms) );
    if ( thrw) {
        throw std::runtime_error( desc);
    }
    return item;
}
//]

inline
std::string sleeper( std::string const& item, int ms, bool thrw = false) {
    return sleeper_impl( item, ms, thrw);
}

inline
double sleeper( double item, int ms, bool thrw = false) {
    return sleeper_impl( item, ms, thrw);
}

inline
int sleeper(int item, int ms, bool thrw = false) {
    return sleeper_impl( item, ms, thrw);
}

/*****************************************************************************
*   Done
*****************************************************************************/
//[wait_done
// Wrap canonical pattern for condition_variable + bool flag
struct Done {
private:
    boost::fibers::condition_variable   cond;
    boost::fibers::mutex                mutex;
    bool                                ready = false;

public:
    typedef std::shared_ptr< Done >     ptr;

    void wait() {
        std::unique_lock< boost::fibers::mutex > lock( mutex);
        cond.wait( lock, [this](){ return ready; });
    }

    void notify() {
        {
            std::unique_lock< boost::fibers::mutex > lock( mutex);
            ready = true;
        } // release mutex
        cond.notify_one();
    }
};
//]

/*****************************************************************************
*   when_any, simple completion
*****************************************************************************/
//[wait_first_simple_impl
// Degenerate case: when there are no functions to wait for, return
// immediately.
void wait_first_simple_impl( Done::ptr) {
}

// When there's at least one function to wait for, launch it and recur to
// process the rest.
template< typename Fn, typename ... Fns >
void wait_first_simple_impl( Done::ptr done, Fn && function, Fns && ... functions) {
    boost::fibers::fiber( [done, function](){
                              function();
                              done->notify();
                          }).detach();
    wait_first_simple_impl( done, std::forward< Fns >( functions) ... );
}
//]

// interface function: instantiate Done, launch tasks, wait for Done
//[wait_first_simple
template< typename ... Fns >
void wait_first_simple( Fns && ... functions) {
    // Use shared_ptr because each function's fiber will bind it separately,
    // and we're going to return before the last of them completes.
    auto done( std::make_shared< Done >() );
    wait_first_simple_impl( done, std::forward< Fns >( functions) ... );
    done->wait();
}
//]

// example usage
Example wfs( runner, "wait_first_simple()", [](){
//[wait_first_simple_ex
    wait_first_simple(
            [](){ sleeper("wfs_long",   150); },
            [](){ sleeper("wfs_medium", 100); },
            [](){ sleeper("wfs_short",   50); });
//]
});

/*****************************************************************************
*   when_any, return value
*****************************************************************************/
// When there's only one function, call this overload
//[wait_first_value_impl
template< typename T, typename Fn >
void wait_first_value_impl( std::shared_ptr< boost::fibers::buffered_channel< T > > chan,
                            Fn && function) {
    boost::fibers::fiber( [chan, function](){
                              // Ignore channel_op_status returned by push():
                              // might be closed; we simply don't care.
                              chan->push( function() );
                          }).detach();
}
//]

// When there are two or more functions, call this overload
template< typename T, typename Fn0, typename Fn1, typename ... Fns >
void wait_first_value_impl( std::shared_ptr< boost::fibers::buffered_channel< T > > chan,
                            Fn0 && function0,
                            Fn1 && function1,
                            Fns && ... functions) {
    // process the first function using the single-function overload
    wait_first_value_impl< T >( chan,
                                std::forward< Fn0 >( function0) );
    // then recur to process the rest
    wait_first_value_impl< T >( chan,
                                std::forward< Fn1 >( function1),
                                std::forward< Fns >( functions) ... );
}

//[wait_first_value
// Assume that all passed functions have the same return type. The return type
// of wait_first_value() is the return type of the first passed function. It is
// simply invalid to pass NO functions.
template< typename Fn, typename ... Fns >
typename std::result_of< Fn() >::type
wait_first_value( Fn && function, Fns && ... functions) {
    typedef typename std::result_of< Fn() >::type return_t;
    typedef boost::fibers::buffered_channel< return_t > channel_t;
    auto chanp( std::make_shared< channel_t >( 64) );
    // launch all the relevant fibers
    wait_first_value_impl< return_t >( chanp,
                                       std::forward< Fn >( function),
                                       std::forward< Fns >( functions) ... );
    // retrieve the first value
    return_t value( chanp->value_pop() );
    // close the channel: no subsequent push() has to succeed
    chanp->close();
    return value;
}
//]

// example usage
Example wfv( runner, "wait_first_value()", [](){
//[wait_first_value_ex
    std::string result = wait_first_value(
            [](){ return sleeper("wfv_third",  150); },
            [](){ return sleeper("wfv_second", 100); },
            [](){ return sleeper("wfv_first",   50); });
    std::cout << "wait_first_value() => " << result << std::endl;
    assert(result == "wfv_first");
//]
});

/*****************************************************************************
*   when_any, produce first outcome, whether result or exception
*****************************************************************************/
// When there's only one function, call this overload.
//[wait_first_outcome_impl
template< typename T, typename CHANP, typename Fn >
void wait_first_outcome_impl( CHANP chan, Fn && function) {
    boost::fibers::fiber(
        // Use std::bind() here for C++11 compatibility. C++11 lambda capture
        // can't move a move-only Fn type, but bind() can. Let bind() move the
        // channel pointer and the function into the bound object, passing
        // references into the lambda.
        std::bind(
            []( CHANP & chan,
                typename std::decay< Fn >::type & function) {
                // Instantiate a packaged_task to capture any exception thrown by
                // function.
                boost::fibers::packaged_task< T() > task( function);
                // Immediately run this packaged_task on same fiber. We want
                // function() to have completed BEFORE we push the future.
                task();
                // Pass the corresponding future to consumer. Ignore
                // channel_op_status returned by push(): might be closed; we
                // simply don't care.
                chan->push( task.get_future() );
            },
            chan,
            std::forward< Fn >( function)
        )).detach();
}
//]

// When there are two or more functions, call this overload
template< typename T, typename CHANP, typename Fn0, typename Fn1, typename ... Fns >
void wait_first_outcome_impl( CHANP chan,
                              Fn0 && function0,
                              Fn1 && function1,
                              Fns && ... functions) {
    // process the first function using the single-function overload
    wait_first_outcome_impl< T >( chan,
                                  std::forward< Fn0 >( function0) );
    // then recur to process the rest
    wait_first_outcome_impl< T >( chan,
                                  std::forward< Fn1 >( function1),
                                  std::forward< Fns >( functions) ... );
}

// Assume that all passed functions have the same return type. The return type
// of wait_first_outcome() is the return type of the first passed function. It is
// simply invalid to pass NO functions.
//[wait_first_outcome
template< typename Fn, typename ... Fns >
typename std::result_of< Fn() >::type
wait_first_outcome( Fn && function, Fns && ... functions) {
    // In this case, the value we pass through the channel is actually a
    // future -- which is already ready. future can carry either a value or an
    // exception.
    typedef typename std::result_of< Fn() >::type return_t;
    typedef boost::fibers::future< return_t > future_t;
    typedef boost::fibers::buffered_channel< future_t > channel_t;
    auto chanp(std::make_shared< channel_t >( 64) );
    // launch all the relevant fibers
    wait_first_outcome_impl< return_t >( chanp,
                                         std::forward< Fn >( function),
                                         std::forward< Fns >( functions) ... );
    // retrieve the first future
    future_t future( chanp->value_pop() );
    // close the channel: no subsequent push() has to succeed
    chanp->close();
    // either return value or throw exception
    return future.get();
}
//]

// example usage
Example wfo( runner, "wait_first_outcome()", [](){
//[wait_first_outcome_ex
    std::string result = wait_first_outcome(
            [](){ return sleeper("wfos_first",   50); },
            [](){ return sleeper("wfos_second", 100); },
            [](){ return sleeper("wfos_third",  150); });
    std::cout << "wait_first_outcome(success) => " << result << std::endl;
    assert(result == "wfos_first");

    std::string thrown;
    try {
        result = wait_first_outcome(
                [](){ return sleeper("wfof_first",   50, true); },
                [](){ return sleeper("wfof_second", 100); },
                [](){ return sleeper("wfof_third",  150); });
    } catch ( std::exception const& e) {
        thrown = e.what();
    }
    std::cout << "wait_first_outcome(fail) threw '" << thrown
              << "'" << std::endl;
    assert(thrown == "wfof_first");
//]
});

/*****************************************************************************
*   when_any, collect exceptions until success; throw exception_list if no
*   success
*****************************************************************************/
// define an exception to aggregate exception_ptrs; prefer
// std::exception_list (N4407 et al.) once that becomes available
//[exception_list
class exception_list : public std::runtime_error {
public:
    exception_list( std::string const& what) :
        std::runtime_error( what) {
    }

    typedef std::vector< std::exception_ptr >   bundle_t;

    // N4407 proposed std::exception_list API
    typedef bundle_t::const_iterator iterator;

    std::size_t size() const noexcept {
        return bundle_.size();
    }

    iterator begin() const noexcept {
        return bundle_.begin();
    }

    iterator end() const noexcept {
        return bundle_.end();
    }

    // extension to populate
    void add( std::exception_ptr ep) {
        bundle_.push_back( ep);
    }

private:
    bundle_t bundle_;
};
//]

// Assume that all passed functions have the same return type. The return type
// of wait_first_success() is the return type of the first passed function. It is
// simply invalid to pass NO functions.
//[wait_first_success
template< typename Fn, typename ... Fns >
typename std::result_of< Fn() >::type
wait_first_success( Fn && function, Fns && ... functions) {
    std::size_t count( 1 + sizeof ... ( functions) );
    // In this case, the value we pass through the channel is actually a
    // future -- which is already ready. future can carry either a value or an
    // exception.
    typedef typename std::result_of< typename std::decay< Fn >::type() >::type return_t;
    typedef boost::fibers::future< return_t > future_t;
    typedef boost::fibers::buffered_channel< future_t > channel_t;
    auto chanp( std::make_shared< channel_t >( 64) );
    // launch all the relevant fibers
    wait_first_outcome_impl< return_t >( chanp,
                                         std::forward< Fn >( function),
                                         std::forward< Fns >( functions) ... );
    // instantiate exception_list, just in case
    exception_list exceptions("wait_first_success() produced only errors");
    // retrieve up to 'count' results -- but stop there!
    for ( std::size_t i = 0; i < count; ++i) {
        // retrieve the next future
        future_t future( chanp->value_pop() );
        // retrieve exception_ptr if any
        std::exception_ptr error( future.get_exception_ptr() );
        // if no error, then yay, return value
        if ( ! error) {
            // close the channel: no subsequent push() has to succeed
            chanp->close();
            // show caller the value we got
            return future.get();
        }

        // error is non-null: collect
        exceptions.add( error);
    }
    // We only arrive here when every passed function threw an exception.
    // Throw our collection to inform caller.
    throw exceptions;
}
//]

// example usage
Example wfss( runner, "wait_first_success()", [](){
//[wait_first_success_ex
    std::string result = wait_first_success(
                [](){ return sleeper("wfss_first",   50, true); },
                [](){ return sleeper("wfss_second", 100); },
                [](){ return sleeper("wfss_third",  150); });
    std::cout << "wait_first_success(success) => " << result << std::endl;
    assert(result == "wfss_second");
//]

    std::string thrown;
    std::size_t count = 0;
    try {
        result = wait_first_success(
                [](){ return sleeper("wfsf_first",   50, true); },
                [](){ return sleeper("wfsf_second", 100, true); },
                [](){ return sleeper("wfsf_third",  150, true); });
    } catch ( exception_list const& e) {
        thrown = e.what();
        count = e.size();
    } catch ( std::exception const& e) {
        thrown = e.what();
    }
    std::cout << "wait_first_success(fail) threw '" << thrown << "': "
              << count << " errors" << std::endl;
    assert(thrown == "wait_first_success() produced only errors");
    assert(count == 3);
});

/*****************************************************************************
*   when_any, heterogeneous
*****************************************************************************/
//[wait_first_value_het
// No need to break out the first Fn for interface function: let the compiler
// complain if empty.
// Our functions have different return types, and we might have to return any
// of them. Use a variant, expanding std::result_of<Fn()>::type for each Fn in
// parameter pack.
template< typename ... Fns >
boost::variant< typename std::result_of< Fns() >::type ... >
wait_first_value_het( Fns && ... functions) {
    // Use buffered_channel<boost::variant<T1, T2, ...>>; see remarks above.
    typedef boost::variant< typename std::result_of< Fns() >::type ... > return_t;
    typedef boost::fibers::buffered_channel< return_t > channel_t;
    auto chanp( std::make_shared< channel_t >( 64) );
    // launch all the relevant fibers
    wait_first_value_impl< return_t >( chanp,
                                       std::forward< Fns >( functions) ... );
    // retrieve the first value
    return_t value( chanp->value_pop() );
    // close the channel: no subsequent push() has to succeed
    chanp->close();
    return value;
}
//]

// example usage
Example wfvh( runner, "wait_first_value_het()", [](){
//[wait_first_value_het_ex
    boost::variant< std::string, double, int > result =
        wait_first_value_het(
                [](){ return sleeper("wfvh_third",  150); },
                [](){ return sleeper(3.14,          100); },
                [](){ return sleeper(17,             50); });
    std::cout << "wait_first_value_het() => " << result << std::endl;
    assert(boost::get< int >( result) == 17);
//]
});

/*****************************************************************************
*   when_all, simple completion
*****************************************************************************/
// Degenerate case: when there are no functions to wait for, return
// immediately.
void wait_all_simple_impl( std::shared_ptr< boost::fibers::barrier >) {
}

// When there's at least one function to wait for, launch it and recur to
// process the rest.
//[wait_all_simple_impl
template< typename Fn, typename ... Fns >
void wait_all_simple_impl( std::shared_ptr< boost::fibers::barrier > barrier,
                           Fn && function, Fns && ... functions) {
    boost::fibers::fiber(
            std::bind(
                []( std::shared_ptr< boost::fibers::barrier > & barrier,
                    typename std::decay< Fn >::type & function) mutable {
                        function();
                        barrier->wait();
                },
                barrier,
                std::forward< Fn >( function)
            )).detach();
    wait_all_simple_impl( barrier, std::forward< Fns >( functions) ... );
}
//]

// interface function: instantiate barrier, launch tasks, wait for barrier
//[wait_all_simple
template< typename ... Fns >
void wait_all_simple( Fns && ... functions) {
    std::size_t count( sizeof ... ( functions) );
    // Initialize a barrier(count+1) because we'll immediately wait on it. We
    // don't want to wake up until 'count' more fibers wait on it. Even though
    // we'll stick around until the last of them completes, use shared_ptr
    // anyway because it's easier to be confident about lifespan issues.
    auto barrier( std::make_shared< boost::fibers::barrier >( count + 1) );
    wait_all_simple_impl( barrier, std::forward< Fns >( functions) ... );
    barrier->wait();
}
//]

// example usage
Example was( runner, "wait_all_simple()", [](){
//[wait_all_simple_ex
    wait_all_simple(
            [](){ sleeper("was_long",   150); },
            [](){ sleeper("was_medium", 100); },
            [](){ sleeper("was_short",   50); });
//]
});

/*****************************************************************************
*   when_all, return values
*****************************************************************************/
//[wait_nchannel
// Introduce a channel facade that closes the channel once a specific number
// of items has been pushed. This allows an arbitrary consumer to read until
// 'closed' without itself having to count items.
template< typename T >
class nchannel {
public:
    nchannel( std::shared_ptr< boost::fibers::buffered_channel< T > > chan,
              std::size_t lm):
        chan_( chan),
        limit_( lm) {
        assert(chan_);
        if ( 0 == limit_) {
            chan_->close();
        }
    }

    boost::fibers::channel_op_status push( T && va) {
        boost::fibers::channel_op_status ok =
            chan_->push( std::forward< T >( va) );
        if ( ok == boost::fibers::channel_op_status::success &&
             --limit_ == 0) {
            // after the 'limit_'th successful push, close the channel
            chan_->close();
        }
        return ok;
    }

private:
    std::shared_ptr< boost::fibers::buffered_channel< T > >    chan_;
    std::size_t                                                 limit_;
};
//]

// When there's only one function, call this overload
//[wait_all_values_impl
template< typename T, typename Fn >
void wait_all_values_impl( std::shared_ptr< nchannel< T > > chan,
                           Fn && function) {
    boost::fibers::fiber( [chan, function](){
                              chan->push(function());
                          }).detach();
}
//]

// When there are two or more functions, call this overload
template< typename T, typename Fn0, typename Fn1, typename ... Fns >
void wait_all_values_impl( std::shared_ptr< nchannel< T > > chan,
                           Fn0 && function0,
                           Fn1 && function1,
                           Fns && ... functions) {
    // process the first function using the single-function overload
    wait_all_values_impl< T >( chan, std::forward< Fn0 >( function0) );
    // then recur to process the rest
    wait_all_values_impl< T >( chan,
                               std::forward< Fn1 >( function1),
                               std::forward< Fns >( functions) ... );
}

//[wait_all_values_source
// Return a shared_ptr<buffered_channel<T>> from which the caller can
// retrieve each new result as it arrives, until 'closed'.
template< typename Fn, typename ... Fns >
std::shared_ptr< boost::fibers::buffered_channel< typename std::result_of< Fn() >::type > >
wait_all_values_source( Fn && function, Fns && ... functions) {
    std::size_t count( 1 + sizeof ... ( functions) );
    typedef typename std::result_of< Fn() >::type return_t;
    typedef boost::fibers::buffered_channel< return_t > channel_t;
    // make the channel
    auto chanp( std::make_shared< channel_t >( 64) );
    // and make an nchannel facade to close it after 'count' items
    auto ncp( std::make_shared< nchannel< return_t > >( chanp, count) );
    // pass that nchannel facade to all the relevant fibers
    wait_all_values_impl< return_t >( ncp,
                                      std::forward< Fn >( function),
                                      std::forward< Fns >( functions) ... );
    // then return the channel for consumer
    return chanp;
}
//]

// When all passed functions have completed, return vector<T> containing
// collected results. Assume that all passed functions have the same return
// type. It is simply invalid to pass NO functions.
//[wait_all_values
template< typename Fn, typename ... Fns >
std::vector< typename std::result_of< Fn() >::type >
wait_all_values( Fn && function, Fns && ... functions) {
    std::size_t count( 1 + sizeof ... ( functions) );
    typedef typename std::result_of< Fn() >::type return_t;
    typedef std::vector< return_t > vector_t;
    vector_t results;
    results.reserve( count);

    // get channel
    std::shared_ptr< boost::fibers::buffered_channel< return_t > > chan =
        wait_all_values_source( std::forward< Fn >( function),
                                std::forward< Fns >( functions) ... );
    // fill results vector
    return_t value;
    while ( boost::fibers::channel_op_status::success == chan->pop(value) ) {
        results.push_back( value);
    }
    // return vector to caller
    return results;
}
//]

Example wav( runner, "wait_all_values()", [](){
//[wait_all_values_source_ex
    std::shared_ptr< boost::fibers::buffered_channel< std::string > > chan =
        wait_all_values_source(
                [](){ return sleeper("wavs_third",  150); },
                [](){ return sleeper("wavs_second", 100); },
                [](){ return sleeper("wavs_first",   50); });
    std::string value;
    while ( boost::fibers::channel_op_status::success == chan->pop(value) ) {
        std::cout << "wait_all_values_source() => '" << value
                  << "'" << std::endl;
    }
//]

//[wait_all_values_ex
    std::vector< std::string > values =
        wait_all_values(
                [](){ return sleeper("wav_late",   150); },
                [](){ return sleeper("wav_middle", 100); },
                [](){ return sleeper("wav_early",   50); });
//]
    std::cout << "wait_all_values() =>";
    for ( std::string const& v : values) {
        std::cout << " '" << v << "'";
    }
    std::cout << std::endl;
});

/*****************************************************************************
*   when_all, throw first exception
*****************************************************************************/
//[wait_all_until_error_source
// Return a shared_ptr<buffered_channel<future<T>>> from which the caller can
// get() each new result as it arrives, until 'closed'.
template< typename Fn, typename ... Fns >
std::shared_ptr<
    boost::fibers::buffered_channel<
        boost::fibers::future<
            typename std::result_of< Fn() >::type > > >
wait_all_until_error_source( Fn && function, Fns && ... functions) {
    std::size_t count( 1 + sizeof ... ( functions) );
    typedef typename std::result_of< Fn() >::type return_t;
    typedef boost::fibers::future< return_t > future_t;
    typedef boost::fibers::buffered_channel< future_t > channel_t;
    // make the channel
    auto chanp( std::make_shared< channel_t >( 64) );
    // and make an nchannel facade to close it after 'count' items
    auto ncp( std::make_shared< nchannel< future_t > >( chanp, count) );
    // pass that nchannel facade to all the relevant fibers
    wait_first_outcome_impl< return_t >( ncp,
                                         std::forward< Fn >( function),
                                         std::forward< Fns >( functions) ... );
    // then return the channel for consumer
    return chanp;
}
//]

// When all passed functions have completed, return vector<T> containing
// collected results, or throw the first exception thrown by any of the passed
// functions. Assume that all passed functions have the same return type. It
// is simply invalid to pass NO functions.
//[wait_all_until_error
template< typename Fn, typename ... Fns >
std::vector< typename std::result_of< Fn() >::type >
wait_all_until_error( Fn && function, Fns && ... functions) {
    std::size_t count( 1 + sizeof ... ( functions) );
    typedef typename std::result_of< Fn() >::type return_t;
    typedef typename boost::fibers::future< return_t > future_t;
    typedef std::vector< return_t > vector_t;
    vector_t results;
    results.reserve( count);

    // get channel
    std::shared_ptr<
        boost::fibers::buffered_channel< future_t > > chan(
            wait_all_until_error_source( std::forward< Fn >( function),
                                         std::forward< Fns >( functions) ... ) );
    // fill results vector
    future_t future;
    while ( boost::fibers::channel_op_status::success == chan->pop( future) ) {
        results.push_back( future.get() );
    }
    // return vector to caller
    return results;
}
//]

Example waue( runner, "wait_all_until_error()", [](){
//[wait_all_until_error_source_ex
    typedef boost::fibers::future< std::string > future_t;
    std::shared_ptr< boost::fibers::buffered_channel< future_t > > chan =
        wait_all_until_error_source(
                [](){ return sleeper("wauess_third",  150); },
                [](){ return sleeper("wauess_second", 100); },
                [](){ return sleeper("wauess_first",   50); });
    future_t future;
    while ( boost::fibers::channel_op_status::success == chan->pop( future) ) {
        std::string value( future.get() );
        std::cout << "wait_all_until_error_source(success) => '" << value
                  << "'" << std::endl;
    }
//]

    chan = wait_all_until_error_source(
            [](){ return sleeper("wauesf_third",  150); },
            [](){ return sleeper("wauesf_second", 100, true); },
            [](){ return sleeper("wauesf_first",   50); });
//[wait_all_until_error_ex
    std::string thrown;
//<-
    try {
        while ( boost::fibers::channel_op_status::success == chan->pop( future) ) {
            std::string value( future.get() );
            std::cout << "wait_all_until_error_source(fail) => '" << value
                      << "'" << std::endl;
        }
    } catch ( std::exception const& e) {
        thrown = e.what();
    }
    std::cout << "wait_all_until_error_source(fail) threw '" << thrown
              << "'" << std::endl;

    thrown.clear();
//->
    try {
        std::vector< std::string > values = wait_all_until_error(
                [](){ return sleeper("waue_late",   150); },
                [](){ return sleeper("waue_middle", 100, true); },
                [](){ return sleeper("waue_early",   50); });
//<-
        std::cout << "wait_all_until_error(fail) =>";
        for ( std::string const& v : values) {
            std::cout << " '" << v << "'";
        }
        std::cout << std::endl;
//->
    } catch ( std::exception const& e) {
        thrown = e.what();
    }
    std::cout << "wait_all_until_error(fail) threw '" << thrown
              << "'" << std::endl;
//]
});

/*****************************************************************************
*   when_all, collect exceptions
*****************************************************************************/
// When all passed functions have succeeded, return vector<T> containing
// collected results, or throw exception_list containing all exceptions thrown
// by any of the passed functions. Assume that all passed functions have the
// same return type. It is simply invalid to pass NO functions.
//[wait_all_collect_errors
template< typename Fn, typename ... Fns >
std::vector< typename std::result_of< Fn() >::type >
wait_all_collect_errors( Fn && function, Fns && ... functions) {
    std::size_t count( 1 + sizeof ... ( functions) );
    typedef typename std::result_of< Fn() >::type return_t;
    typedef typename boost::fibers::future< return_t > future_t;
    typedef std::vector< return_t > vector_t;
    vector_t results;
    results.reserve( count);
    exception_list exceptions("wait_all_collect_errors() exceptions");

    // get channel
    std::shared_ptr<
        boost::fibers::buffered_channel< future_t > > chan(
            wait_all_until_error_source( std::forward< Fn >( function),
                                         std::forward< Fns >( functions) ... ) );
    // fill results and/or exceptions vectors
    future_t future;
    while ( boost::fibers::channel_op_status::success == chan->pop( future) ) {
        std::exception_ptr exp = future.get_exception_ptr();
        if ( ! exp) {
            results.push_back( future.get() );
        } else {
            exceptions.add( exp);
        }
    }
    // if there were any exceptions, throw
    if ( exceptions.size() ) {
        throw exceptions;
    }
    // no exceptions: return vector to caller
    return results;
}
//]

Example wace( runner, "wait_all_collect_errors()", [](){
    std::vector< std::string > values = wait_all_collect_errors(
            [](){ return sleeper("waces_late",   150); },
            [](){ return sleeper("waces_middle", 100); },
            [](){ return sleeper("waces_early",   50); });
    std::cout << "wait_all_collect_errors(success) =>";
    for ( std::string const& v : values) {
        std::cout << " '" << v << "'";
    }
    std::cout << std::endl;

    std::string thrown;
    std::size_t errors = 0;
    try {
        values = wait_all_collect_errors(
                [](){ return sleeper("wacef_late",   150, true); },
                [](){ return sleeper("wacef_middle", 100, true); },
                [](){ return sleeper("wacef_early",   50); });
        std::cout << "wait_all_collect_errors(fail) =>";
        for ( std::string const& v : values) {
            std::cout << " '" << v << "'";
        }
        std::cout << std::endl;
    } catch ( exception_list const& e) {
        thrown = e.what();
        errors = e.size();
    } catch ( std::exception const& e) {
        thrown = e.what();
    }
    std::cout << "wait_all_collect_errors(fail) threw '" << thrown
              << "': " << errors << " errors" << std::endl;
});

/*****************************************************************************
*   when_all, heterogeneous
*****************************************************************************/
//[wait_all_members_get
template< typename Result, typename ... Futures >
Result wait_all_members_get( Futures && ... futures) {
    // Fetch the results from the passed futures into Result's initializer
    // list. It's true that the get() calls here will block the implicit
    // iteration over futures -- but that doesn't matter because we won't be
    // done until the slowest of them finishes anyway. As results are
    // processed in argument-list order rather than order of completion, the
    // leftmost get() to throw an exception will cause that exception to
    // propagate to the caller.
    return Result{ futures.get() ... };
}
//]

//[wait_all_members
// Explicitly pass Result. This can be any type capable of being initialized
// from the results of the passed functions, such as a struct.
template< typename Result, typename ... Fns >
Result wait_all_members( Fns && ... functions) {
    // Run each of the passed functions on a separate fiber, passing all their
    // futures to helper function for processing.
    return wait_all_members_get< Result >(
            boost::fibers::async( std::forward< Fns >( functions) ) ... );
}
//]

// used by following example
//[wait_Data
struct Data {
    std::string str;
    double      inexact;
    int         exact;

    friend std::ostream& operator<<( std::ostream& out, Data const& data)/*=;
    ...*/
//<-
    {
        return out << "Data{str='" << data.str << "', inexact=" << data.inexact
                   << ", exact=" << data.exact << "}";
    }
//->
};
//]

// example usage
Example wam( runner, "wait_all_members()", [](){
//[wait_all_members_data_ex
    Data data = wait_all_members< Data >(
            [](){ return sleeper("wams_left", 100); },
            [](){ return sleeper(3.14,        150); },
            [](){ return sleeper(17,          50); });
    std::cout << "wait_all_members<Data>(success) => " << data << std::endl;
//]

    std::string thrown;
    try {
        data = wait_all_members< Data >(
                [](){ return sleeper("wamf_left", 100, true); },
                [](){ return sleeper(3.14,        150); },
                [](){ return sleeper(17,          50, true); });
        std::cout << "wait_all_members<Data>(fail) => " << data << std::endl;
    } catch ( std::exception const& e) {
        thrown = e.what();
    }
    std::cout << "wait_all_members<Data>(fail) threw '" << thrown
              << '"' << std::endl;

//[wait_all_members_vector_ex
    // If we don't care about obtaining results as soon as they arrive, and we
    // prefer a result vector in passed argument order rather than completion
    // order, wait_all_members() is another possible implementation of
    // wait_all_until_error().
    auto strings = wait_all_members< std::vector< std::string > >(
            [](){ return sleeper("wamv_left",   150); },
            [](){ return sleeper("wamv_middle", 100); },
            [](){ return sleeper("wamv_right",   50); });
    std::cout << "wait_all_members<vector>() =>";
    for ( std::string const& str : strings) {
        std::cout << " '" << str << "'";
    }
    std::cout << std::endl;
//]
});


/*****************************************************************************
*   main()
*****************************************************************************/
int main( int argc, char *argv[]) {
    runner.run();
    std::cout << "done." << std::endl;
    return EXIT_SUCCESS;
}