1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
//=======================================================================
// Copyright 2001 Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee,
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#include <boost/config.hpp>
#include <stdlib.h>
#include <iostream>
#include <stack>
#include <queue>
#include <ctime>
#include <boost/operators.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/graph/visitors.hpp>
#include <boost/property_map/property_map.hpp>
using namespace boost;
typedef std::pair< int, int > Position;
Position knight_jumps[8]
= { Position(2, -1), Position(1, -2), Position(-1, -2), Position(-2, -1),
Position(-2, 1), Position(-1, 2), Position(1, 2), Position(2, 1) };
Position operator+(const Position& p1, const Position& p2)
{
return Position(p1.first + p2.first, p1.second + p2.second);
}
struct knights_tour_graph;
struct knight_adjacency_iterator
: public boost::forward_iterator_helper< knight_adjacency_iterator, Position,
std::ptrdiff_t, Position*, Position >
{
knight_adjacency_iterator() {}
knight_adjacency_iterator(int ii, Position p, const knights_tour_graph& g)
: m_pos(p), m_g(&g), m_i(ii)
{
valid_position();
}
Position operator*() const { return m_pos + knight_jumps[m_i]; }
void operator++()
{
++m_i;
valid_position();
}
bool operator==(const knight_adjacency_iterator& x) const
{
return m_i == x.m_i;
}
protected:
void valid_position();
Position m_pos;
const knights_tour_graph* m_g;
int m_i;
};
struct knights_tour_graph
{
typedef Position vertex_descriptor;
typedef std::pair< vertex_descriptor, vertex_descriptor > edge_descriptor;
typedef knight_adjacency_iterator adjacency_iterator;
typedef void out_edge_iterator;
typedef void in_edge_iterator;
typedef void edge_iterator;
typedef void vertex_iterator;
typedef int degree_size_type;
typedef int vertices_size_type;
typedef int edges_size_type;
typedef directed_tag directed_category;
typedef disallow_parallel_edge_tag edge_parallel_category;
typedef adjacency_graph_tag traversal_category;
knights_tour_graph(int n) : m_board_size(n) {}
int m_board_size;
};
int num_vertices(const knights_tour_graph& g)
{
return g.m_board_size * g.m_board_size;
}
void knight_adjacency_iterator::valid_position()
{
Position new_pos = m_pos + knight_jumps[m_i];
while (m_i < 8
&& (new_pos.first < 0 || new_pos.second < 0
|| new_pos.first >= m_g->m_board_size
|| new_pos.second >= m_g->m_board_size))
{
++m_i;
new_pos = m_pos + knight_jumps[m_i];
}
}
std::pair< knights_tour_graph::adjacency_iterator,
knights_tour_graph::adjacency_iterator >
adjacent_vertices(
knights_tour_graph::vertex_descriptor v, const knights_tour_graph& g)
{
typedef knights_tour_graph::adjacency_iterator Iter;
return std::make_pair(Iter(0, v, g), Iter(8, v, g));
}
struct compare_first
{
template < typename P > bool operator()(const P& x, const P& y)
{
return x.first < y.first;
}
};
template < typename Graph, typename TimePropertyMap >
bool backtracking_search(Graph& g,
typename graph_traits< Graph >::vertex_descriptor src,
TimePropertyMap time_map)
{
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
typedef std::pair< int, Vertex > P;
std::stack< P > S;
int time_stamp = 0;
S.push(std::make_pair(time_stamp, src));
while (!S.empty())
{
Vertex x;
boost::tie(time_stamp, x) = S.top();
put(time_map, x, time_stamp);
// all vertices have been visited, success!
if (time_stamp == num_vertices(g) - 1)
return true;
bool deadend = true;
typename graph_traits< Graph >::adjacency_iterator i, end;
for (boost::tie(i, end) = adjacent_vertices(x, g); i != end; ++i)
if (get(time_map, *i) == -1)
{
S.push(std::make_pair(time_stamp + 1, *i));
deadend = false;
}
if (deadend)
{
put(time_map, x, -1);
S.pop();
boost::tie(time_stamp, x) = S.top();
while (get(time_map, x) != -1)
{ // unwind stack to last unexplored vertex
put(time_map, x, -1);
S.pop();
boost::tie(time_stamp, x) = S.top();
}
}
} // while (!S.empty())
return false;
}
template < typename Vertex, typename Graph, typename TimePropertyMap >
int number_of_successors(Vertex x, Graph& g, TimePropertyMap time_map)
{
int s_x = 0;
typename graph_traits< Graph >::adjacency_iterator i, end;
for (boost::tie(i, end) = adjacent_vertices(x, g); i != end; ++i)
if (get(time_map, *i) == -1)
++s_x;
return s_x;
}
template < typename Graph, typename TimePropertyMap >
bool warnsdorff(Graph& g, typename graph_traits< Graph >::vertex_descriptor src,
TimePropertyMap time_map)
{
typedef typename graph_traits< Graph >::vertex_descriptor Vertex;
typedef std::pair< int, Vertex > P;
std::stack< P > S;
int time_stamp = 0;
S.push(std::make_pair(time_stamp, src));
while (!S.empty())
{
Vertex x;
boost::tie(time_stamp, x) = S.top();
put(time_map, x, time_stamp);
// all vertices have been visited, success!
if (time_stamp == num_vertices(g) - 1)
return true;
// Put adjacent vertices into a local priority queue
std::priority_queue< P, std::vector< P >, compare_first > Q;
typename graph_traits< Graph >::adjacency_iterator i, end;
int num_succ;
for (boost::tie(i, end) = adjacent_vertices(x, g); i != end; ++i)
if (get(time_map, *i) == -1)
{
num_succ = number_of_successors(*i, g, time_map);
Q.push(std::make_pair(num_succ, *i));
}
bool deadend = Q.empty();
// move vertices from local priority queue to the stack
for (; !Q.empty(); Q.pop())
{
boost::tie(num_succ, x) = Q.top();
S.push(std::make_pair(time_stamp + 1, x));
}
if (deadend)
{
put(time_map, x, -1);
S.pop();
boost::tie(time_stamp, x) = S.top();
while (get(time_map, x) != -1)
{ // unwind stack to last unexplored vertex
put(time_map, x, -1);
S.pop();
boost::tie(time_stamp, x) = S.top();
}
}
} // while (!S.empty())
return false;
}
struct board_map
{
typedef int value_type;
typedef Position key_type;
typedef read_write_property_map_tag category;
board_map(int* b, int n) : m_board(b), m_size(n) {}
friend int get(const board_map& ba, Position p);
friend void put(const board_map& ba, Position p, int v);
friend std::ostream& operator<<(std::ostream& os, const board_map& ba);
private:
int* m_board;
int m_size;
};
int get(const board_map& ba, Position p)
{
return ba.m_board[p.first * ba.m_size + p.second];
}
void put(const board_map& ba, Position p, int v)
{
ba.m_board[p.first * ba.m_size + p.second] = v;
}
std::ostream& operator<<(std::ostream& os, const board_map& ba)
{
for (int i = 0; i < ba.m_size; ++i)
{
for (int j = 0; j < ba.m_size; ++j)
os << get(ba, Position(i, j)) << "\t";
os << std::endl;
}
return os;
}
int main(int argc, char* argv[])
{
int N;
if (argc == 2)
N = atoi(argv[1]);
else
N = 8;
knights_tour_graph g(N);
int* board = new int[num_vertices(g)];
board_map chessboard(board, N);
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
put(chessboard, Position(i, j), -1);
bool ret = warnsdorff(g, Position(0, 0), chessboard);
if (ret)
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
std::cout << get(chessboard, Position(i, j)) << "\t";
std::cout << std::endl;
}
else
std::cout << "method failed" << std::endl;
return 0;
}
|