File: mod_inverse.qbk

package info (click to toggle)
boost1.83 1.83.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 545,632 kB
  • sloc: cpp: 3,857,086; xml: 125,552; ansic: 34,414; python: 25,887; asm: 5,276; sh: 4,799; ada: 1,681; makefile: 1,629; perl: 1,212; pascal: 1,139; sql: 810; yacc: 478; ruby: 102; lisp: 24; csh: 6
file content (50 lines) | stat: -rw-r--r-- 1,219 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
[section:mod_inverse Modular Multiplicative Inverse]

[section Introduction]

The modular multiplicative inverse of a number /a/ is that number /x/ which satisfies /ax/ = 1 mod /p/.
A fast algorithm for computing modular multiplicative inverses based on the extended Euclidean algorithm exists and is provided by Boost.

[endsect]

[section Synopsis]

    #include <boost/integer/mod_inverse.hpp>

    namespace boost { namespace integer {

    template<class Z>
    Z mod_inverse(Z a, Z m);

    }}

[endsect]

[section Usage]

    int x = mod_inverse(2, 5);
    // prints x = 3:
    std::cout << "x = " << x << "\n";

    int y = mod_inverse(2, 4);
    if (y == 0)
    {
        std::cout << "There is no inverse of 2 mod 4\n";
    }

Multiplicative modular inverses exist if and only if /a/ and /m/ are coprime.
If /a/ and /m/ share a common factor, then `mod_inverse(a, m)` returns zero.

[endsect]

[section References]
Wagstaff, Samuel S., ['The Joy of Factoring], Vol. 68. American Mathematical Soc., 2013.

[endsect]
[endsect]
[/
Copyright 2018 Nick Thompson.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
https://www.boost.org/LICENSE_1_0.txt).
]