File: capture_in_exception.cpp

package info (click to toggle)
boost1.83 1.83.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 545,632 kB
  • sloc: cpp: 3,857,086; xml: 125,552; ansic: 34,414; python: 25,887; asm: 5,276; sh: 4,799; ada: 1,681; makefile: 1,629; perl: 1,212; pascal: 1,139; sql: 810; yacc: 478; ruby: 102; lisp: 24; csh: 6
file content (98 lines) | stat: -rw-r--r-- 3,340 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
// Copyright 2018-2022 Emil Dotchevski and Reverge Studios, Inc.

// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

// This is a simple program that demonstrates the use of LEAF to transport error
// objects between threads, using exception handling. See capture_in_result.cpp
// for the version that does not use exception handling.

#include <boost/leaf.hpp>
#include <vector>
#include <string>
#include <future>
#include <iterator>
#include <iostream>
#include <algorithm>
#include <thread>

namespace leaf = boost::leaf;

// Define several error types.
struct e_thread_id { std::thread::id value; };
struct e_failure_info1 { std::string value; };
struct e_failure_info2 { int value; };

// A type that represents a successfully returned result from a task.
struct task_result { };

 // This is our task function. It produces objects of type task_result, but it
 // may fail.
task_result task()
{
    bool succeed = (rand()%4) != 0; //...at random.
    if( succeed )
        return { };
    else
        leaf::throw_exception(
            e_thread_id{std::this_thread::get_id()},
            e_failure_info1{"info"},
            e_failure_info2{42} );
};

int main()
{
    int const task_count = 42;

    // The error_handlers are used in this thread (see leaf::try_catch below).
    // The arguments passed to individual lambdas are transported from the
    // worker thread to the main thread automatically.
    auto error_handlers = std::make_tuple(
        []( e_failure_info1 const & v1, e_failure_info2 const & v2, e_thread_id const & tid )
        {
            std::cerr << "Error in thread " << tid.value << "! failure_info1: " << v1.value << ", failure_info2: " << v2.value << std::endl;
        },
        []( leaf::diagnostic_info const & unmatched )
        {
            std::cerr <<
                "Unknown failure detected" << std::endl <<
                "Cryptic diagnostic information follows" << std::endl <<
                unmatched;
        } );

    // Container to collect the generated std::future objects.
    std::vector<std::future<task_result>> fut;

    // Launch the tasks, but rather than launching the task function directly,
    // we launch a wrapper function which calls leaf::capture, passing a context
    // object that will hold the error objects reported from the task in case it
    // throws. The error types the context is able to hold statically are
    // automatically deduced from the type of the error_handlers tuple.
    std::generate_n( std::back_inserter(fut), task_count,
        [&]
        {
            return std::async(
                std::launch::async,
                [&]
                {
                    return leaf::capture(leaf::make_shared_context(error_handlers), &task);
                } );
        } );

    // Wait on the futures, get the task results, handle errors.
    for( auto & f : fut )
    {
        f.wait();

        leaf::try_catch(
            [&]
            {
                task_result r = f.get();

                // Success! Use r to access task_result.
                std::cout << "Success!" << std::endl;
                (void) r; // Presumably we'll somehow use the task_result.
            },
            error_handlers );
    }
}