1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
// (C) Copyright Nick Thompson 2021.
// (C) Copyright Matt Borland 2022.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <cmath>
#include <cstdint>
#include <array>
#include <complex>
#include <tuple>
#include <iostream>
#include <vector>
#include <limits>
#include <boost/math/tools/color_maps.hpp>
#if !__has_include("lodepng.h")
#error "lodepng.h is required to run this example."
#endif
#include "lodepng.h"
#include <iostream>
#include <string>
#include <vector>
// In lodepng, the vector is expected to be row major, with the top row
// specified first. Note that this is a bit confusing sometimes as it's more
// natural to let y increase moving *up*.
unsigned write_png(const std::string &filename,
const std::vector<std::uint8_t> &img, std::size_t width,
std::size_t height) {
unsigned error = lodepng::encode(filename, img, width, height,
LodePNGColorType::LCT_RGBA, 8);
if (error) {
std::cerr << "Error encoding png: " << lodepng_error_text(error) << "\n";
}
return error;
}
// Computes ab - cd.
// See: https://pharr.org/matt/blog/2019/11/03/difference-of-floats.html
template <typename Real>
inline Real difference_of_products(Real a, Real b, Real c, Real d)
{
Real cd = c * d;
Real err = std::fma(-c, d, cd);
Real dop = std::fma(a, b, -cd);
return dop + err;
}
template<typename Real>
auto fifth_roots(std::complex<Real> z)
{
std::complex<Real> v = std::pow(z,4);
std::complex<Real> dw = Real(5)*v;
std::complex<Real> w = v*z - Real(1);
return std::make_pair(w, dw);
}
template<typename Real>
auto g(std::complex<Real> z)
{
std::complex<Real> z2 = z*z;
std::complex<Real> z3 = z*z2;
std::complex<Real> z4 = z2*z2;
std::complex<Real> w = z4*(z4 + Real(15)) - Real(16);
std::complex<Real> dw = Real(4)*z3*(Real(2)*z4 + Real(15));
return std::make_pair(w, dw);
}
template<typename Real>
std::complex<Real> complex_newton(std::function<std::pair<std::complex<Real>,std::complex<Real>>(std::complex<Real>)> f, std::complex<Real> z)
{
// f(x(1+e)) = f(x) + exf'(x)
bool close = false;
do
{
auto [y, dy] = f(z);
z -= y/dy;
close = (abs(y) <= 1.4*std::numeric_limits<Real>::epsilon()*abs(z*dy));
} while(!close);
return z;
}
template<typename Real>
class plane_pixel_map
{
public:
plane_pixel_map(int64_t image_width, int64_t image_height, Real xmin, Real ymin)
{
image_width_ = image_width;
image_height_ = image_height;
xmin_ = xmin;
ymin_ = ymin;
}
std::complex<Real> to_complex(int64_t i, int64_t j) const {
Real x = xmin_ + 2*abs(xmin_)*Real(i)/Real(image_width_ - 1);
Real y = ymin_ + 2*abs(ymin_)*Real(j)/Real(image_height_ - 1);
return std::complex<Real>(x,y);
}
std::pair<int64_t, int64_t> to_pixel(std::complex<Real> z) const {
Real x = z.real();
Real y = z.imag();
Real ii = (image_width_ - 1)*(x - xmin_)/(2*abs(xmin_));
Real jj = (image_height_ - 1)*(y - ymin_)/(2*abs(ymin_));
return std::make_pair(std::round(ii), std::round(jj));
}
private:
int64_t image_width_;
int64_t image_height_;
Real xmin_;
Real ymin_;
};
int main(int argc, char** argv)
{
using Real = double;
using boost::math::tools::viridis;
using std::sqrt;
std::function<std::array<Real, 3>(Real)> color_map = viridis<Real>;
std::string requested_color_map = "viridis";
if (argc == 2) {
requested_color_map = std::string(argv[1]);
if (requested_color_map == "smooth_cool_warm") {
color_map = boost::math::tools::smooth_cool_warm<Real>;
}
else if (requested_color_map == "plasma") {
color_map = boost::math::tools::plasma<Real>;
}
else if (requested_color_map == "black_body") {
color_map = boost::math::tools::black_body<Real>;
}
else if (requested_color_map == "inferno") {
color_map = boost::math::tools::inferno<Real>;
}
else if (requested_color_map == "kindlmann") {
color_map = boost::math::tools::kindlmann<Real>;
}
else if (requested_color_map == "extended_kindlmann") {
color_map = boost::math::tools::extended_kindlmann<Real>;
}
else {
std::cerr << "Could not recognize color map " << argv[1] << ".";
return 1;
}
}
constexpr int64_t image_width = 1024;
constexpr int64_t image_height = 1024;
constexpr const Real two_pi = 6.28318530718;
std::vector<std::uint8_t> img(4*image_width*image_height, 0);
plane_pixel_map<Real> map(image_width, image_height, Real(-2), Real(-2));
for (int64_t j = 0; j < image_height; ++j)
{
std::cout << "j = " << j << "\n";
for (int64_t i = 0; i < image_width; ++i)
{
std::complex<Real> z0 = map.to_complex(i,j);
auto rt = complex_newton<Real>(g<Real>, z0);
// The root is one of exp(2*pi*ij/5). Therefore, it can be classified by angle.
Real theta = std::atan2(rt.imag(), rt.real());
// Now theta in [-pi,pi]. Get it into [0,2pi]:
if (theta < 0) {
theta += two_pi;
}
theta /= two_pi;
if (std::isnan(theta)) {
std::cerr << "Theta is a nan!\n";
}
auto c = boost::math::tools::to_8bit_rgba(color_map(theta));
int64_t idx = 4 * image_width * (image_height - 1 - j) + 4 * i;
img[idx + 0] = c[0];
img[idx + 1] = c[1];
img[idx + 2] = c[2];
img[idx + 3] = c[3];
}
}
std::array<std::complex<Real>, 8> roots;
roots[0] = -Real(1);
roots[1] = Real(1);
roots[2] = {Real(0), Real(1)};
roots[3] = {Real(0), -Real(1)};
roots[4] = {sqrt(Real(2)), sqrt(Real(2))};
roots[5] = {sqrt(Real(2)), -sqrt(Real(2))};
roots[6] = {-sqrt(Real(2)), -sqrt(Real(2))};
roots[7] = {-sqrt(Real(2)), sqrt(Real(2))};
for (int64_t k = 0; k < 8; ++k)
{
auto [ic, jc] = map.to_pixel(roots[k]);
int64_t r = 7;
for (int64_t i = ic - r; i < ic + r; ++i)
{
for (int64_t j = jc - r; j < jc + r; ++j)
{
if ((i-ic)*(i-ic) + (j-jc)*(j-jc) > r*r)
{
continue;
}
int64_t idx = 4 * image_width * (image_height - 1 - j) + 4 * i;
img[idx + 0] = 0;
img[idx + 1] = 0;
img[idx + 2] = 0;
img[idx + 3] = 0xff;
}
}
}
// Requires lodepng.h
// See: https://github.com/lvandeve/lodepng for download and compilation instructions
write_png(requested_color_map + "_newton_fractal.png", img, image_width, image_height);
}
|