File: fourier_transform_daubechies_ulp_plot.cpp

package info (click to toggle)
boost1.83 1.83.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 545,632 kB
  • sloc: cpp: 3,857,086; xml: 125,552; ansic: 34,414; python: 25,887; asm: 5,276; sh: 4,799; ada: 1,681; makefile: 1,629; perl: 1,212; pascal: 1,139; sql: 810; yacc: 478; ruby: 102; lisp: 24; csh: 6
file content (60 lines) | stat: -rw-r--r-- 1,983 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
// boost-no-inspect
//  (C) Copyright Nick Thompson 2023.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#include <boost/math/special_functions/fourier_transform_daubechies.hpp>
#include <boost/math/tools/ulps_plot.hpp>

using boost::math::fourier_transform_daubechies_scaling;
using boost::math::tools::ulps_plot;

template<int p>
void real_part() {
   auto phi_real_hi_acc = [](double omega) {
       auto z = fourier_transform_daubechies_scaling<double, p>(omega);
       return z.real();
   };

   auto phi_real_lo_acc = [](float omega) {
      auto z = fourier_transform_daubechies_scaling<float, p>(omega);
      return z.real();
   };
   auto plot = ulps_plot<decltype(phi_real_hi_acc), double, float>(phi_real_hi_acc, float(0.0), float(100.0), 20000);
   plot.ulp_envelope(false);
   plot.add_fn(phi_real_lo_acc);
   plot.clip(100);
   plot.title("Accuracy of 𝔑(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments.");
   plot.write("real_ft_daub_scaling_"  + std::to_string(p) + ".svg");
 
}

template<int p>
void imaginary_part() {
   auto phi_imag_hi_acc = [](double omega) {
       auto z = fourier_transform_daubechies_scaling<double, p>(omega);
       return z.imag();
   };

   auto phi_imag_lo_acc = [](float omega) {
      auto z = fourier_transform_daubechies_scaling<float, p>(omega);
      return z.imag();
   };
   auto plot = ulps_plot<decltype(phi_imag_hi_acc), double, float>(phi_imag_hi_acc, float(0.0), float(100.0), 20000);
   plot.ulp_envelope(false);
   plot.add_fn(phi_imag_lo_acc);
   plot.clip(100);
   plot.title("Accuracy of 𝕴(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments.");
   plot.write("imag_ft_daub_scaling_"  + std::to_string(p) + ".svg");
 
}


int main() {
   real_part<3>();
   imaginary_part<3>();
   real_part<6>();
   imaginary_part<6>();
   return 0;
}