1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
// boost-no-inspect
// (C) Copyright Nick Thompson 2023.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/special_functions/fourier_transform_daubechies.hpp>
#include <boost/math/tools/ulps_plot.hpp>
using boost::math::fourier_transform_daubechies_scaling;
using boost::math::tools::ulps_plot;
template<int p>
void real_part() {
auto phi_real_hi_acc = [](double omega) {
auto z = fourier_transform_daubechies_scaling<double, p>(omega);
return z.real();
};
auto phi_real_lo_acc = [](float omega) {
auto z = fourier_transform_daubechies_scaling<float, p>(omega);
return z.real();
};
auto plot = ulps_plot<decltype(phi_real_hi_acc), double, float>(phi_real_hi_acc, float(0.0), float(100.0), 20000);
plot.ulp_envelope(false);
plot.add_fn(phi_real_lo_acc);
plot.clip(100);
plot.title("Accuracy of 𝔑(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments.");
plot.write("real_ft_daub_scaling_" + std::to_string(p) + ".svg");
}
template<int p>
void imaginary_part() {
auto phi_imag_hi_acc = [](double omega) {
auto z = fourier_transform_daubechies_scaling<double, p>(omega);
return z.imag();
};
auto phi_imag_lo_acc = [](float omega) {
auto z = fourier_transform_daubechies_scaling<float, p>(omega);
return z.imag();
};
auto plot = ulps_plot<decltype(phi_imag_hi_acc), double, float>(phi_imag_hi_acc, float(0.0), float(100.0), 20000);
plot.ulp_envelope(false);
plot.add_fn(phi_imag_lo_acc);
plot.clip(100);
plot.title("Accuracy of 𝕴(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments.");
plot.write("imag_ft_daub_scaling_" + std::to_string(p) + ".svg");
}
int main() {
real_part<3>();
imaginary_part<3>();
real_part<6>();
imaginary_part<6>();
return 0;
}
|