1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
// inverse_chi_squared_distribution_find_df_example.cpp
// Copyright Paul A. Bristow 2010.
// Copyright Thomas Mang 2010.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
//#define BOOST_MATH_INSTRUMENT
// Example 1 of using inverse chi squared distribution
#include <boost/math/distributions/inverse_chi_squared.hpp>
using boost::math::inverse_chi_squared_distribution; // inverse_chi_squared_distribution.
using boost::math::inverse_chi_squared; //typedef for nverse_chi_squared_distribution double.
#include <iostream>
using std::cout; using std::endl;
#include <iomanip>
using std::setprecision;
using std::setw;
#include <cmath>
using std::sqrt;
int main()
{
cout << "Example using Inverse chi squared distribution to find df. " << endl;
try
{
cout.precision(std::numeric_limits<double>::max_digits10); //
int i = std::numeric_limits<double>::max_digits10;
cout << "Show all potentially significant decimal digits std::numeric_limits<double>::max_digits10 = " << i << endl;
cout.precision(3);
double nu = 10.;
double scale1 = 1./ nu; // 1st definition sigma^2 = 1/df;
double scale2 = 1.; // 2nd definition sigma^2 = 1
inverse_chi_squared sichsq(nu, 1/nu); // Explicitly scaled to default scale = 1/df.
inverse_chi_squared ichsq(nu); // Implicitly scaled to default scale = 1/df.
// Try degrees of freedom estimator
//double df = chi_squared::find_degrees_of_freedom(-diff, alpha[i], alpha[i], variance);
cout << "ichsq.degrees_of_freedom() = " << ichsq.degrees_of_freedom() << endl;
double diff = 0.5; // difference from variance to detect (delta).
double variance = 1.; // true variance
double alpha = 0.9;
double beta = 0.9;
cout << "diff = " << diff
<< ", variance = " << variance << ", ratio = " << diff/variance
<< ", alpha = " << alpha << ", beta = " << beta << endl;
/* inverse_chi_square_df_estimator is not in the code base anymore?
using boost::math::detail::inverse_chi_square_df_estimator;
using boost::math::policies::default_policy;
inverse_chi_square_df_estimator<> a_df(alpha, beta, variance, diff);
cout << "df est" << endl;
for (double df = 1; df < 3; df += 0.1)
{
double est_df = a_df(1);
cout << df << " " << a_df(df) << endl;
}
*/
//template <class F, class T, class Tol, class Policy>std::pair<T, T>
// bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, std::uintmax_t& max_iter, const Policy& pol)
// TODO: Not implemented
//double df = inverse_chi_squared_distribution<>::find_degrees_of_freedom(diff, alpha, beta, variance, 0);
//cout << df << endl;
}
catch(const std::exception& e)
{ // Always useful to include try & catch blocks because default policies
// are to throw exceptions on arguments that cause errors like underflow, overflow.
// Lacking try & catch blocks, the program will abort without a message below,
// which may give some helpful clues as to the cause of the exception.
std::cout <<
"\n""Message from thrown exception was:\n " << e.what() << std::endl;
}
return 0;
} // int main()
/*
Output is:
Example using Inverse chi squared distribution to find df.
Show all potentially significant decimal digits std::numeric_limits<double>::max_digits10 = 17
10
Message from thrown exception was:
Error in function boost::math::inverse_chi_squared_distribution<double>::inverse_chi_squared_distribution: Degrees of freedom argument is 1.#INF, but must be > 0 !
diff = 0.5, variance = 1, ratio = 0.5, alpha = 0.1, beta = 0.1
df est
1 1
ratio+1 = 1.5, quantile(0.1) = 0.00618, cdf = 6.5e-037, result = -0.1
1.1 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.00903, cdf = 1.2e-025, result = -0.1
1.2 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.0125, cdf = 8.25e-019, result = -0.1
1.3 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.0166, cdf = 2.17e-014, result = -0.1
1.4 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.0212, cdf = 2.2e-011, result = -0.1
1.5 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.0265, cdf = 3e-009, result = -0.1
1.6 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.0323, cdf = 1.11e-007, result = -0.1
1.7 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.0386, cdf = 1.7e-006, result = -0.1
1.8 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.0454, cdf = 1.41e-005, result = -0.1
1.9 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.0527, cdf = 7.55e-005, result = -0.1
2 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.0604, cdf = 0.000291, result = -0.1
2.1 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.0685, cdf = 0.00088, result = -0.1
2.2 -0.1
ratio+1 = 1.5, quantile(0.1) = 0.0771, cdf = 0.0022, result = -0.0999
2.3 -0.0999
ratio+1 = 1.5, quantile(0.1) = 0.0859, cdf = 0.00475, result = -0.0997
2.4 -0.0997
ratio+1 = 1.5, quantile(0.1) = 0.0952, cdf = 0.00911, result = -0.0993
2.5 -0.0993
ratio+1 = 1.5, quantile(0.1) = 0.105, cdf = 0.0159, result = -0.0984
2.6 -0.0984
ratio+1 = 1.5, quantile(0.1) = 0.115, cdf = 0.0257, result = -0.0967
2.7 -0.0967
ratio+1 = 1.5, quantile(0.1) = 0.125, cdf = 0.039, result = -0.094
2.8 -0.094
ratio+1 = 1.5, quantile(0.1) = 0.135, cdf = 0.056, result = -0.0897
2.9 -0.0897
ratio+1 = 1.5, quantile(0.1) = 20.6, cdf = 1, result = 0.9
ichsq.degrees_of_freedom() = 10
diff = 0.5, variance = 1, ratio = 0.5, alpha = 0.9, beta = 0.9
df est
1 1
ratio+1 = 1.5, quantile(0.9) = 0.729, cdf = 0.269, result = -0.729
1.1 -0.729
ratio+1 = 1.5, quantile(0.9) = 0.78, cdf = 0.314, result = -0.693
1.2 -0.693
ratio+1 = 1.5, quantile(0.9) = 0.83, cdf = 0.36, result = -0.655
1.3 -0.655
ratio+1 = 1.5, quantile(0.9) = 0.879, cdf = 0.405, result = -0.615
1.4 -0.615
ratio+1 = 1.5, quantile(0.9) = 0.926, cdf = 0.449, result = -0.575
1.5 -0.575
ratio+1 = 1.5, quantile(0.9) = 0.973, cdf = 0.492, result = -0.535
1.6 -0.535
ratio+1 = 1.5, quantile(0.9) = 1.02, cdf = 0.534, result = -0.495
1.7 -0.495
ratio+1 = 1.5, quantile(0.9) = 1.06, cdf = 0.574, result = -0.455
1.8 -0.455
ratio+1 = 1.5, quantile(0.9) = 1.11, cdf = 0.612, result = -0.417
1.9 -0.417
ratio+1 = 1.5, quantile(0.9) = 1.15, cdf = 0.648, result = -0.379
2 -0.379
ratio+1 = 1.5, quantile(0.9) = 1.19, cdf = 0.681, result = -0.342
2.1 -0.342
ratio+1 = 1.5, quantile(0.9) = 1.24, cdf = 0.713, result = -0.307
2.2 -0.307
ratio+1 = 1.5, quantile(0.9) = 1.28, cdf = 0.742, result = -0.274
2.3 -0.274
ratio+1 = 1.5, quantile(0.9) = 1.32, cdf = 0.769, result = -0.242
2.4 -0.242
ratio+1 = 1.5, quantile(0.9) = 1.36, cdf = 0.793, result = -0.212
2.5 -0.212
ratio+1 = 1.5, quantile(0.9) = 1.4, cdf = 0.816, result = -0.184
2.6 -0.184
ratio+1 = 1.5, quantile(0.9) = 1.44, cdf = 0.836, result = -0.157
2.7 -0.157
ratio+1 = 1.5, quantile(0.9) = 1.48, cdf = 0.855, result = -0.133
2.8 -0.133
ratio+1 = 1.5, quantile(0.9) = 1.52, cdf = 0.872, result = -0.11
2.9 -0.11
ratio+1 = 1.5, quantile(0.9) = 29.6, cdf = 1, result = 0.1
*/
|