File: inverse_chi_squared_find_df_example.cpp

package info (click to toggle)
boost1.83 1.83.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 545,632 kB
  • sloc: cpp: 3,857,086; xml: 125,552; ansic: 34,414; python: 25,887; asm: 5,276; sh: 4,799; ada: 1,681; makefile: 1,629; perl: 1,212; pascal: 1,139; sql: 810; yacc: 478; ruby: 102; lisp: 24; csh: 6
file content (188 lines) | stat: -rw-r--r-- 7,285 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// inverse_chi_squared_distribution_find_df_example.cpp

// Copyright Paul A. Bristow 2010.
// Copyright Thomas Mang 2010.

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

//#define BOOST_MATH_INSTRUMENT

// Example 1 of using inverse chi squared distribution
#include <boost/math/distributions/inverse_chi_squared.hpp>
using boost::math::inverse_chi_squared_distribution;  // inverse_chi_squared_distribution.
using boost::math::inverse_chi_squared; //typedef for nverse_chi_squared_distribution double.

#include <iostream>
using std::cout;    using std::endl;
#include <iomanip> 
using std::setprecision;
using std::setw;
#include <cmath>
using std::sqrt;

int main()
{
  cout << "Example using Inverse chi squared distribution to find df. " << endl;
  try
  {
    cout.precision(std::numeric_limits<double>::max_digits10); // 
    int i = std::numeric_limits<double>::max_digits10;
    cout << "Show all potentially significant decimal digits std::numeric_limits<double>::max_digits10 = " << i << endl; 

    cout.precision(3);
    double nu = 10.;
    double scale1 = 1./ nu; // 1st definition sigma^2 = 1/df;
    double scale2 = 1.; // 2nd definition sigma^2 = 1
    inverse_chi_squared sichsq(nu, 1/nu); // Explicitly scaled to default scale = 1/df.
    inverse_chi_squared ichsq(nu); // Implicitly scaled to default scale = 1/df.
    // Try degrees of freedom estimator

    //double df = chi_squared::find_degrees_of_freedom(-diff, alpha[i], alpha[i], variance);

    cout << "ichsq.degrees_of_freedom() = " << ichsq.degrees_of_freedom() << endl;

    double diff = 0.5;  // difference from variance to detect (delta).
    double variance = 1.; // true variance
    double alpha = 0.9;
    double beta = 0.9;

    cout << "diff = " << diff 
      << ", variance = " << variance << ", ratio = " << diff/variance
      << ", alpha = " << alpha << ", beta = " << beta << endl;

    /* inverse_chi_square_df_estimator is not in the code base anymore?

    using boost::math::detail::inverse_chi_square_df_estimator;
    using boost::math::policies::default_policy;
    inverse_chi_square_df_estimator<> a_df(alpha, beta, variance, diff);

    cout << "df    est" << endl;
    for (double df = 1; df < 3; df += 0.1)
    {
      double est_df = a_df(1);
      cout << df << "    " << a_df(df) << endl;
    }
    */

    //template <class F, class T, class Tol, class Policy>std::pair<T, T> 
    // bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, std::uintmax_t& max_iter, const Policy& pol)


    // TODO: Not implemented
    //double df = inverse_chi_squared_distribution<>::find_degrees_of_freedom(diff, alpha, beta, variance, 0);
    //cout << df << endl;
  }
  catch(const std::exception& e)
  { // Always useful to include try & catch blocks because default policies 
    // are to throw exceptions on arguments that cause errors like underflow, overflow. 
    // Lacking try & catch blocks, the program will abort without a message below,
    // which may give some helpful clues as to the cause of the exception.
    std::cout <<
      "\n""Message from thrown exception was:\n   " << e.what() << std::endl;
  }
  return 0;
}  // int main()

/*

Output is:

  Example using Inverse chi squared distribution to find df. 
  Show all potentially significant decimal digits std::numeric_limits<double>::max_digits10 = 17
  10
  
  Message from thrown exception was:
     Error in function boost::math::inverse_chi_squared_distribution<double>::inverse_chi_squared_distribution: Degrees of freedom argument is 1.#INF, but must be > 0 !
diff = 0.5, variance = 1, ratio = 0.5, alpha = 0.1, beta = 0.1
  df    est
  1    1
  ratio+1 = 1.5, quantile(0.1) = 0.00618, cdf = 6.5e-037, result = -0.1
  1.1    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.00903, cdf = 1.2e-025, result = -0.1
  1.2    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.0125, cdf = 8.25e-019, result = -0.1
  1.3    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.0166, cdf = 2.17e-014, result = -0.1
  1.4    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.0212, cdf = 2.2e-011, result = -0.1
  1.5    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.0265, cdf = 3e-009, result = -0.1
  1.6    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.0323, cdf = 1.11e-007, result = -0.1
  1.7    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.0386, cdf = 1.7e-006, result = -0.1
  1.8    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.0454, cdf = 1.41e-005, result = -0.1
  1.9    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.0527, cdf = 7.55e-005, result = -0.1
  2    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.0604, cdf = 0.000291, result = -0.1
  2.1    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.0685, cdf = 0.00088, result = -0.1
  2.2    -0.1
  ratio+1 = 1.5, quantile(0.1) = 0.0771, cdf = 0.0022, result = -0.0999
  2.3    -0.0999
  ratio+1 = 1.5, quantile(0.1) = 0.0859, cdf = 0.00475, result = -0.0997
  2.4    -0.0997
  ratio+1 = 1.5, quantile(0.1) = 0.0952, cdf = 0.00911, result = -0.0993
  2.5    -0.0993
  ratio+1 = 1.5, quantile(0.1) = 0.105, cdf = 0.0159, result = -0.0984
  2.6    -0.0984
  ratio+1 = 1.5, quantile(0.1) = 0.115, cdf = 0.0257, result = -0.0967
  2.7    -0.0967
  ratio+1 = 1.5, quantile(0.1) = 0.125, cdf = 0.039, result = -0.094
  2.8    -0.094
  ratio+1 = 1.5, quantile(0.1) = 0.135, cdf = 0.056, result = -0.0897
  2.9    -0.0897
  ratio+1 = 1.5, quantile(0.1) = 20.6, cdf = 1, result = 0.9

    ichsq.degrees_of_freedom() = 10
  diff = 0.5, variance = 1, ratio = 0.5, alpha = 0.9, beta = 0.9
  df    est
  1    1
  ratio+1 = 1.5, quantile(0.9) = 0.729, cdf = 0.269, result = -0.729
  1.1    -0.729
  ratio+1 = 1.5, quantile(0.9) = 0.78, cdf = 0.314, result = -0.693
  1.2    -0.693
  ratio+1 = 1.5, quantile(0.9) = 0.83, cdf = 0.36, result = -0.655
  1.3    -0.655
  ratio+1 = 1.5, quantile(0.9) = 0.879, cdf = 0.405, result = -0.615
  1.4    -0.615
  ratio+1 = 1.5, quantile(0.9) = 0.926, cdf = 0.449, result = -0.575
  1.5    -0.575
  ratio+1 = 1.5, quantile(0.9) = 0.973, cdf = 0.492, result = -0.535
  1.6    -0.535
  ratio+1 = 1.5, quantile(0.9) = 1.02, cdf = 0.534, result = -0.495
  1.7    -0.495
  ratio+1 = 1.5, quantile(0.9) = 1.06, cdf = 0.574, result = -0.455
  1.8    -0.455
  ratio+1 = 1.5, quantile(0.9) = 1.11, cdf = 0.612, result = -0.417
  1.9    -0.417
  ratio+1 = 1.5, quantile(0.9) = 1.15, cdf = 0.648, result = -0.379
  2    -0.379
  ratio+1 = 1.5, quantile(0.9) = 1.19, cdf = 0.681, result = -0.342
  2.1    -0.342
  ratio+1 = 1.5, quantile(0.9) = 1.24, cdf = 0.713, result = -0.307
  2.2    -0.307
  ratio+1 = 1.5, quantile(0.9) = 1.28, cdf = 0.742, result = -0.274
  2.3    -0.274
  ratio+1 = 1.5, quantile(0.9) = 1.32, cdf = 0.769, result = -0.242
  2.4    -0.242
  ratio+1 = 1.5, quantile(0.9) = 1.36, cdf = 0.793, result = -0.212
  2.5    -0.212
  ratio+1 = 1.5, quantile(0.9) = 1.4, cdf = 0.816, result = -0.184
  2.6    -0.184
  ratio+1 = 1.5, quantile(0.9) = 1.44, cdf = 0.836, result = -0.157
  2.7    -0.157
  ratio+1 = 1.5, quantile(0.9) = 1.48, cdf = 0.855, result = -0.133
  2.8    -0.133
  ratio+1 = 1.5, quantile(0.9) = 1.52, cdf = 0.872, result = -0.11
  2.9    -0.11
  ratio+1 = 1.5, quantile(0.9) = 29.6, cdf = 1, result = 0.1


  */