1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
// Copyright Paul A. Bristow 2016, 2018.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or
// copy at http ://www.boost.org/LICENSE_1_0.txt).
//! Lambert W examples of controlling precision
// #define BOOST_MATH_INSTRUMENT_LAMBERT_W // #define only for (much) diagnostic output.
#include <boost/config.hpp> // for BOOST_PLATFORM, BOOST_COMPILER, BOOST_STDLIB ...
#include <boost/version.hpp> // for BOOST_MSVC versions.
#include <boost/math/constants/constants.hpp> // For exp_minus_one == 3.67879441171442321595523770161460867e-01.
#include <boost/math/policies/policy.hpp>
#include <boost/math/special_functions/next.hpp> // for float_distance.
#include <boost/math/special_functions/relative_difference.hpp> // for relative and epsilon difference.
// Built-in/fundamental GCC float128 or Intel Quad 128-bit type, if available.
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp> // Not available for MSVC.
// sets BOOST_MP_USE_FLOAT128 for GCC
using boost::multiprecision::float128;
#endif //# NOT _MSC_VER
#include <boost/multiprecision/cpp_dec_float.hpp> // boost::multiprecision::cpp_dec_float_50
using boost::multiprecision::cpp_dec_float_50; // 50 decimal digits type.
using boost::multiprecision::cpp_dec_float_100; // 100 decimal digits type.
#include <boost/multiprecision/cpp_bin_float.hpp>
using boost::multiprecision::cpp_bin_float_double_extended;
using boost::multiprecision::cpp_bin_float_double;
using boost::multiprecision::cpp_bin_float_quad;
// For lambert_w function.
#include <boost/math/special_functions/lambert_w.hpp>
// using boost::math::lambert_w0;
// using boost::math::lambert_wm1;
#include <iostream>
#include <exception>
#include <stdexcept>
#include <string>
#include <limits> // For std::numeric_limits.
int main()
{
try
{
std::cout << "Lambert W examples of precision control." << std::endl;
std::cout.precision(std::numeric_limits<double>::max_digits10);
std::cout << std::showpoint << std::endl; // Show any trailing zeros.
using boost::math::constants::exp_minus_one;
using boost::math::lambert_w0;
using boost::math::lambert_wm1;
// Error handling policy examples.
using namespace boost::math::policies;
using boost::math::policies::make_policy;
using boost::math::policies::policy;
using boost::math::policies::evaluation_error;
using boost::math::policies::domain_error;
using boost::math::policies::overflow_error;
using boost::math::policies::throw_on_error;
//[lambert_w_precision_reference_w
using boost::multiprecision::cpp_bin_float_50;
using boost::math::float_distance;
cpp_bin_float_50 z("10."); // Note use a decimal digit string, not a double 10.
cpp_bin_float_50 r;
std::cout.precision(std::numeric_limits<cpp_bin_float_50>::digits10);
r = lambert_w0(z); // Default policy.
std::cout << "lambert_w0(z) cpp_bin_float_50 = " << r << std::endl;
//lambert_w0(z) cpp_bin_float_50 = 1.7455280027406993830743012648753899115352881290809
// [N[productlog[10], 50]] == 1.7455280027406993830743012648753899115352881290809
std::cout.precision(std::numeric_limits<double>::max_digits10);
std::cout << "lambert_w0(z) static_cast from cpp_bin_float_50 = "
<< static_cast<double>(r) << std::endl;
// double lambert_w0(z) static_cast from cpp_bin_float_50 = 1.7455280027406994
// [N[productlog[10], 17]] == 1.7455280027406994
std::cout << "bits different from Wolfram = "
<< static_cast<int>(float_distance(static_cast<double>(r), 1.7455280027406994))
<< std::endl; // 0
//] [/lambert_w_precision_reference_w]
//[lambert_w_precision_0
std::cout.precision(std::numeric_limits<float>::max_digits10); // Show all potentially significant decimal digits,
std::cout << std::showpoint << std::endl; // and show any significant trailing zeros too.
float x = 10.;
std::cout << "Lambert W (" << x << ") = " << lambert_w0(x) << std::endl;
//] [/lambert_w_precision_0]
/*
//[lambert_w_precision_output_0
Lambert W (10.0000000) = 1.74552800
//] [/lambert_w_precision_output_0]
*/
{ // Lambert W0 Halley step example
//[lambert_w_precision_1
using boost::math::lambert_w_detail::lambert_w_halley_step;
using boost::math::epsilon_difference;
using boost::math::relative_difference;
std::cout << std::showpoint << std::endl; // and show any significant trailing zeros too.
std::cout.precision(std::numeric_limits<double>::max_digits10); // 17 decimal digits for double.
cpp_bin_float_50 z50("1.23"); // Note: use a decimal digit string, not a double 1.23!
double z = static_cast<double>(z50);
cpp_bin_float_50 w50;
w50 = lambert_w0(z50);
std::cout.precision(std::numeric_limits<cpp_bin_float_50>::max_digits10); // 50 decimal digits.
std::cout << "Reference Lambert W (" << z << ") =\n "
<< w50 << std::endl;
std::cout.precision(std::numeric_limits<double>::max_digits10); // 17 decimal digits for double.
double wr = static_cast<double>(w50);
std::cout << "Reference Lambert W (" << z << ") = " << wr << std::endl;
double w = lambert_w0(z);
std::cout << "Rat/poly Lambert W (" << z << ") = " << lambert_w0(z) << std::endl;
// Add a Halley step to the value obtained from rational polynomial approximation.
double ww = lambert_w_halley_step(lambert_w0(z), z);
std::cout << "Halley Step Lambert W (" << z << ") = " << lambert_w_halley_step(lambert_w0(z), z) << std::endl;
std::cout << "absolute difference from Halley step = " << w - ww << std::endl;
std::cout << "relative difference from Halley step = " << relative_difference(w, ww) << std::endl;
std::cout << "epsilon difference from Halley step = " << epsilon_difference(w, ww) << std::endl;
std::cout << "epsilon for float = " << std::numeric_limits<double>::epsilon() << std::endl;
std::cout << "bits different from Halley step = " << static_cast<int>(float_distance(w, ww)) << std::endl;
//] [/lambert_w_precision_1]
/*
//[lambert_w_precision_output_1
Reference Lambert W (1.2299999999999999822364316059974953532218933105468750) =
0.64520356959320237759035605255334853830173300262666480
Reference Lambert W (1.2300000000000000) = 0.64520356959320235
Rat/poly Lambert W (1.2300000000000000) = 0.64520356959320224
Halley Step Lambert W (1.2300000000000000) = 0.64520356959320235
absolute difference from Halley step = -1.1102230246251565e-16
relative difference from Halley step = 1.7207329236029286e-16
epsilon difference from Halley step = 0.77494921535422934
epsilon for float = 2.2204460492503131e-16
bits different from Halley step = 1
//] [/lambert_w_precision_output_1]
*/
} // Lambert W0 Halley step example
{ // Lambert W-1 Halley step example
//[lambert_w_precision_2
using boost::math::lambert_w_detail::lambert_w_halley_step;
using boost::math::epsilon_difference;
using boost::math::relative_difference;
std::cout << std::showpoint << std::endl; // and show any significant trailing zeros too.
std::cout.precision(std::numeric_limits<double>::max_digits10); // 17 decimal digits for double.
cpp_bin_float_50 z50("-0.123"); // Note: use a decimal digit string, not a double -1.234!
double z = static_cast<double>(z50);
cpp_bin_float_50 wm1_50;
wm1_50 = lambert_wm1(z50);
std::cout.precision(std::numeric_limits<cpp_bin_float_50>::max_digits10); // 50 decimal digits.
std::cout << "Reference Lambert W-1 (" << z << ") =\n "
<< wm1_50 << std::endl;
std::cout.precision(std::numeric_limits<double>::max_digits10); // 17 decimal digits for double.
double wr = static_cast<double>(wm1_50);
std::cout << "Reference Lambert W-1 (" << z << ") = " << wr << std::endl;
double w = lambert_wm1(z);
std::cout << "Rat/poly Lambert W-1 (" << z << ") = " << lambert_wm1(z) << std::endl;
// Add a Halley step to the value obtained from rational polynomial approximation.
double ww = lambert_w_halley_step(lambert_wm1(z), z);
std::cout << "Halley Step Lambert W (" << z << ") = " << lambert_w_halley_step(lambert_wm1(z), z) << std::endl;
std::cout << "absolute difference from Halley step = " << w - ww << std::endl;
std::cout << "relative difference from Halley step = " << relative_difference(w, ww) << std::endl;
std::cout << "epsilon difference from Halley step = " << epsilon_difference(w, ww) << std::endl;
std::cout << "epsilon for float = " << std::numeric_limits<double>::epsilon() << std::endl;
std::cout << "bits different from Halley step = " << static_cast<int>(float_distance(w, ww)) << std::endl;
//] [/lambert_w_precision_2]
}
/*
//[lambert_w_precision_output_2
Reference Lambert W-1 (-0.12299999999999999822364316059974953532218933105468750) =
-3.2849102557740360179084675531714935199110302996513384
Reference Lambert W-1 (-0.12300000000000000) = -3.2849102557740362
Rat/poly Lambert W-1 (-0.12300000000000000) = -3.2849102557740357
Halley Step Lambert W (-0.12300000000000000) = -3.2849102557740362
absolute difference from Halley step = 4.4408920985006262e-16
relative difference from Halley step = 1.3519066740696092e-16
epsilon difference from Halley step = 0.60884463935795785
epsilon for float = 2.2204460492503131e-16
bits different from Halley step = -1
//] [/lambert_w_precision_output_2]
*/
// Similar example using cpp_bin_float_quad (128-bit floating-point types).
cpp_bin_float_quad zq = 10.;
std::cout << "\nTest evaluation of cpp_bin_float_quad Lambert W(" << zq << ")"
<< std::endl;
std::cout << std::setprecision(3) << "std::numeric_limits<cpp_bin_float_quad>::digits = " << std::numeric_limits<cpp_bin_float_quad>::digits << std::endl;
std::cout << std::setprecision(3) << "std::numeric_limits<cpp_bin_float_quad>::epsilon() = " << std::numeric_limits<cpp_bin_float_quad>::epsilon() << std::endl;
std::cout << std::setprecision(3) << "std::numeric_limits<cpp_bin_float_quad>::max_digits10 = " << std::numeric_limits<cpp_bin_float_quad>::max_digits10 << std::endl;
std::cout << std::setprecision(3) << "std::numeric_limits<cpp_bin_float_quad>::digits10 = " << std::numeric_limits<cpp_bin_float_quad>::digits10 << std::endl;
std::cout.precision(std::numeric_limits<cpp_bin_float_quad>::max_digits10);
// All are same precision because double precision first approximation used before Halley.
/*
*/
{ // Reference value for lambert_w0(10)
cpp_dec_float_50 z("10");
cpp_dec_float_50 r;
std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);
r = lambert_w0(z); // Default policy.
std::cout << "lambert_w0(z) cpp_dec_float_50 = " << r << std::endl; // 0.56714329040978387299996866221035554975381578718651
std::cout.precision(std::numeric_limits<cpp_bin_float_quad>::max_digits10);
std::cout << "lambert_w0(z) cpp_dec_float_50 cast to quad (max_digits10(" << std::numeric_limits<cpp_bin_float_quad>::max_digits10 <<
" ) = " << static_cast<cpp_bin_float_quad>(r) << std::endl; // 1.7455280027406993830743012648753899115352881290809
std::cout.precision(std::numeric_limits<cpp_bin_float_quad>::digits10); // 1.745528002740699383074301264875389837
std::cout << "lambert_w0(z) cpp_dec_float_50 cast to quad (digits10(" << std::numeric_limits<cpp_bin_float_quad>::digits10 <<
" ) = " << static_cast<cpp_bin_float_quad>(r) << std::endl; // 1.74552800274069938307430126487539
std::cout.precision(std::numeric_limits<cpp_bin_float_quad>::digits10 + 1); //
std::cout << "lambert_w0(z) cpp_dec_float_50 cast to quad (digits10(" << std::numeric_limits<cpp_bin_float_quad>::digits10 <<
" ) = " << static_cast<cpp_bin_float_quad>(r) << std::endl; // 1.74552800274069938307430126487539
// [N[productlog[10], 50]] == 1.7455280027406993830743012648753899115352881290809
// [N[productlog[10], 37]] == 1.745528002740699383074301264875389912
// [N[productlog[10], 34]] == 1.745528002740699383074301264875390
// [N[productlog[10], 33]] == 1.74552800274069938307430126487539
// lambert_w0(z) cpp_dec_float_50 cast to quad = 1.745528002740699383074301264875389837
// lambert_w0(z) cpp_dec_float_50 = 1.7455280027406993830743012648753899115352881290809
// lambert_w0(z) cpp_dec_float_50 cast to quad = 1.745528002740699383074301264875389837
// lambert_w0(z) cpp_dec_float_50 cast to quad = 1.74552800274069938307430126487539
}
}
catch (std::exception& ex)
{
std::cout << ex.what() << std::endl;
}
} // int main()
|