File: trapezoidal_example.cpp

package info (click to toggle)
boost1.83 1.83.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 545,632 kB
  • sloc: cpp: 3,857,086; xml: 125,552; ansic: 34,414; python: 25,887; asm: 5,276; sh: 4,799; ada: 1,681; makefile: 1,629; perl: 1,212; pascal: 1,139; sql: 810; yacc: 478; ruby: 102; lisp: 24; csh: 6
file content (29 lines) | stat: -rw-r--r-- 1,122 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * Copyright Nick Thompson, 2017
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 *
 * This example shows to to numerically integrate a periodic function using the adaptive_trapezoidal routine provided by boost.
 */

#include <iostream>
#include <cmath>
#include <limits>
#include <boost/math/quadrature/trapezoidal.hpp>

int main()
{
    using boost::math::constants::two_pi;
    using boost::math::constants::third;
    using boost::math::quadrature::trapezoidal;
    // This function has an analytic form for its integral over a period: 2pi/3.
    auto f = [](double x) { return 1/(5 - 4*cos(x)); };

    double Q = trapezoidal(f, (double) 0, two_pi<double>());

    std::cout << std::setprecision(std::numeric_limits<double>::digits10);
    std::cout << "The adaptive trapezoidal rule gives the integral of our function as " << Q << "\n";
    std::cout << "The exact result is                                                 " << two_pi<double>()*third<double>() << "\n";

}