1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
// Lambert W lookup table generator lambert_w_lookup_table_generator.cpp
//! \file
//! Output a table of precomputed array values for Lambert W0 and W-1,
//! and square roots and halves, and powers of e,
// as a .ipp file for use by lambert_w.hpp.
//! \details Output as long double precision (suffix L) using Boost.Multiprecision
//! to 34 decimal digits precision to cater for platforms that have 128-bit long double.
//! The function bisection can then use any built-in floating-point type,
//! which may have different precision and speed on different platforms.
//! The actual builtin floating-point type of the arrays is chosen by a
//! typedef in \modular-boost\libs\math\include\boost\math\special_functions\lambert_w.hpp
//! by default, for example: typedef double lookup_t;
// This includes lookup tables for both branches W0 and W-1.
// Only W-1 is needed by current code that uses JM rational Polynomials,
// but W0 is kept (for now) to allow comparison with the previous FKDVPB version
// that uses lookup for W0 branch as well as W-1.
#include <boost/config.hpp>
#include <boost/math/constants/constants.hpp> // For exp_minus_one == 3.67879441171442321595523770161460867e-01.
using boost::math::constants::exp_minus_one; // 0.36787944
using boost::math::constants::root_e; // 1.64872
#include <boost/multiprecision/cpp_bin_float.hpp>
using boost::multiprecision::cpp_bin_float_quad;
using boost::multiprecision::cpp_bin_float_50;
#include <iostream>
#include <fstream>
#include <typeinfo>
/*
typedef double lookup_t; // Type for lookup table (double or float?)
static constexpr std::size_t noof_sqrts = 12;
static constexpr lookup_t a[noof_sqrts] = // 0.6065 0.7788, 0.8824 ... 0.9997, sqrt of previous elements.
{
0.60653065971263342, 0.77880078307140487, 0.8824969025845954, 0.93941306281347579, 0.96923323447634408, 0.98449643700540841,
0.99221793826024351, 0.99610136947011749, 0.99804878110747547, 0.99902391418197566, 0.99951183793988937, 0.99975588917489722
};
static constexpr lookup_t b[noof_sqrts] = // 0.5 0.25 0.125, 0.0625 ... 0.0002441, halves of previous elements.
{ 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.00390625, 0.001953125, 0.0009765625, 0.00048828125, 0.000244140625 };
static constexpr size_t noof_w0zs = 65;
static constexpr lookup_t g[noof_w0zs] = // lambert_w[k] for W0 branch. 0 2.7182 14.77 60.2566 ... 1.445e+29 3.990e+29.
{ 0., 2.7182818284590452, 14.7781121978613, 60.256610769563003, 218.39260013257696, 742.06579551288302, 2420.5727609564107, 7676.4321089992102,
23847.663896333826, 72927.755348178456, 220264.65794806717, 658615.558867176, 1953057.4970280471, 5751374.0961159665, 16836459.978306875, 49035260.58708166,
142177768.32812596, 410634196.81078007, 1181879444.4719492, 3391163718.300558, 9703303908.1958056, 27695130424.147509, 78868082614.895014, 224130479263.72476,
635738931116.24334, 1800122483434.6468, 5088969845149.8079, 14365302496248.563, 40495197800161.305, 114008694617177.22, 320594237445733.86,
900514339622670.18, 2526814725845782.2, 7083238132935230.1, 19837699245933466., 55510470830970076., 1.5520433569614703e+17, 4.3360826779369662e+17,
1.2105254067703227e+18, 3.3771426165357561e+18, 9.4154106734807994e+18, 2.6233583234732253e+19, 7.3049547543861044e+19, 2.032970971338619e+20,
5.6547040503180956e+20, 1.5720421975868293e+21, 4.3682149334771265e+21, 1.2132170565093317e+22, 3.3680332378068632e+22, 9.3459982052259885e+22,
2.5923527642935362e+23, 7.1876803203773879e+23, 1.99212416037262e+24, 5.5192924995054165e+24, 1.5286067837683347e+25, 4.2321318958281094e+25,
1.1713293177672778e+26, 3.2408603996214814e+26, 8.9641258264226028e+26, 2.4787141382364034e+27, 6.8520443388941057e+27, 1.8936217407781711e+28,
5.2317811346197018e+28, 1.4450833904658542e+29, 3.9904954117194348e+29
};
static constexpr std::size_t noof_wm1zs = 66;
static constexpr lookup_t e[noof_wm1zs] = // lambert_w[k] for W-1 branch. 2.7182 1. 0.3678 0.1353 0.04978 ... 4.359e-28 1.603e-28
{
2.7182818284590452, 1., 0.36787944117144232, 0.13533528323661269, 0.049787068367863943, 0.01831563888873418, 0.0067379469990854671,
0.0024787521766663584, 0.00091188196555451621, 0.00033546262790251184, 0.00012340980408667955, 4.5399929762484852e-05, 1.6701700790245659e-05,
6.1442123533282098e-06, 2.2603294069810543e-06, 8.3152871910356788e-07, 3.0590232050182579e-07, 1.1253517471925911e-07, 4.1399377187851667e-08,
1.5229979744712628e-08, 5.6027964375372675e-09, 2.0611536224385578e-09, 7.5825604279119067e-10, 2.7894680928689248e-10, 1.026187963170189e-10,
3.7751345442790977e-11, 1.3887943864964021e-11, 5.1090890280633247e-12, 1.8795288165390833e-12, 6.914400106940203e-13, 2.5436656473769229e-13,
9.3576229688401746e-14, 3.4424771084699765e-14, 1.2664165549094176e-14, 4.6588861451033974e-15, 1.713908431542013e-15, 6.3051167601469894e-16,
2.3195228302435694e-16, 8.5330476257440658e-17, 3.1391327920480296e-17, 1.1548224173015786e-17, 4.248354255291589e-18, 1.5628821893349888e-18,
5.7495222642935598e-19, 2.1151310375910805e-19, 7.7811322411337965e-20, 2.8625185805493936e-20, 1.0530617357553812e-20, 3.8739976286871871e-21,
1.4251640827409351e-21, 5.2428856633634639e-22, 1.9287498479639178e-22, 7.0954741622847041e-23, 2.6102790696677048e-23, 9.602680054508676e-24,
3.532628572200807e-24, 1.2995814250075031e-24, 4.7808928838854691e-25, 1.7587922024243116e-25, 6.4702349256454603e-26, 2.3802664086944006e-26,
8.7565107626965203e-27, 3.2213402859925161e-27, 1.185064864233981e-27, 4.359610000063081e-28, 1.6038108905486378e-28
};
lambert_w0 version of array from Fukushima
// lambert_w[k] for W-1 branch. 2.7182 1. 0.3678 0.1353 0.04978 ... 4.359e-28 1.603e-28
e: 2.7182818284590452, 1., 0.36787944117144232, 0.13533528323661269, 0.049787068367863943, 0.01831563888873418, 0.0067379469990854671,
0.0024787521766663584, 0.00091188196555451621, 0.00033546262790251184, 0.00012340980408667955, 4.5399929762484852e-05, 1.6701700790245659e-05,
6.1442123533282098e-06, 2.2603294069810543e-06, 8.3152871910356788e-07, 3.0590232050182579e-07, 1.1253517471925911e-07, 4.1399377187851667e-08,
1.5229979744712628e-08, 5.6027964375372675e-09, 2.0611536224385578e-09, 7.5825604279119067e-10, 2.7894680928689248e-10, 1.026187963170189e-10,
3.7751345442790977e-11, 1.3887943864964021e-11, 5.1090890280633247e-12, 1.8795288165390833e-12, 6.914400106940203e-13, 2.5436656473769229e-13,
9.3576229688401746e-14, 3.4424771084699765e-14, 1.2664165549094176e-14, 4.6588861451033974e-15, 1.713908431542013e-15, 6.3051167601469894e-16,
2.3195228302435694e-16, 8.5330476257440658e-17, 3.1391327920480296e-17, 1.1548224173015786e-17, 4.248354255291589e-18, 1.5628821893349888e-18,
5.7495222642935598e-19, 2.1151310375910805e-19, 7.7811322411337965e-20, 2.8625185805493936e-20, 1.0530617357553812e-20, 3.8739976286871871e-21,
1.4251640827409351e-21, 5.2428856633634639e-22, 1.9287498479639178e-22, 7.0954741622847041e-23, 2.6102790696677048e-23, 9.602680054508676e-24,
3.532628572200807e-24, 1.2995814250075031e-24, 4.7808928838854691e-25, 1.7587922024243116e-25, 6.4702349256454603e-26, 2.3802664086944006e-26,
8.7565107626965203e-27, 3.2213402859925161e-27, 1.185064864233981e-27, 4.359610000063081e-28, 1.6038108905486378e-28
// lambert_w[k] for W0 branch. 0 2.7182 14.77 60.2566 ... 1.445e+29 3.990e+29.
g: 0, 2.7182818284590452, 14.7781121978613, 60.256610769563003, 218.39260013257696, 742.06579551288302, 2420.5727609564107, 7676.4321089992102,
23847.663896333826, 72927.755348178456, 220264.65794806717, 658615.558867176, 1953057.4970280471, 5751374.0961159665, 16836459.978306875, 49035260.58708166,
142177768.32812596, 410634196.81078007, 1181879444.4719492, 3391163718.300558, 9703303908.1958056, 27695130424.147509, 78868082614.895014, 224130479263.72476,
635738931116.24334, 1800122483434.6468, 5088969845149.8079, 14365302496248.563, 40495197800161.305, 114008694617177.22, 320594237445733.86,
900514339622670.18, 2526814725845782.2, 7083238132935230.1, 19837699245933466, 55510470830970076, 1.5520433569614703e+17, 4.3360826779369662e+17,
1.2105254067703227e+18, 3.3771426165357561e+18, 9.4154106734807994e+18, 2.6233583234732253e+19, 7.3049547543861044e+19, 2.032970971338619e+20,
5.6547040503180956e+20, 1.5720421975868293e+21, 4.3682149334771265e+21, 1.2132170565093317e+22, 3.3680332378068632e+22, 9.3459982052259885e+22,
2.5923527642935362e+23, 7.1876803203773879e+23, 1.99212416037262e+24, 5.5192924995054165e+24, 1.5286067837683347e+25, 4.2321318958281094e+25,
1.1713293177672778e+26, 3.2408603996214814e+26, 8.9641258264226028e+26, 2.4787141382364034e+27, 6.8520443388941057e+27, 1.8936217407781711e+28,
5.2317811346197018e+28, 1.4450833904658542e+29, 3.9904954117194348e+29
lambert_wm1 version of arrays from Fukushima
e: 2.7182817459106445 7.3890557289123535 20.085535049438477 54.59814453125 148.41314697265625 403.42874145507813 1096.6329345703125 2980.957275390625 8103.08154296875 22026.458984375 59874.12109375 162754.734375 442413.21875 1202603.75 3269015.75 8886106 24154940 65659932 178482192 485164896 1318814848 3584910336 9744796672 26489102336 72004845568 195729457152 532047822848 1446255919104 3931331100672 10686465835008 29048824659968 78962889850880 214643389759488 583461240832000 1586012102852608 4311227773747200 11719131799748608 31855901283450880 86593318145753088 2.3538502982225101e+17 6.398428560008151e+17 1.7392731886358364e+18 4.7278345784949473e+18 1.2851586685678387e+19 3.493423319351296e+19 9.4961089747571704e+19 2.581309902546461e+20 7.0167278463083348e+20 1.9073443887231177e+21 5.1846992652160593e+21 1.4093473476000776e+22 3.831003235981371e+22 1.0413746376682761e+23 2.8307496154307266e+23 7.6947746628514896e+23 2.0916565667371597e+24 5.6857119515524837e+24 1.5455367020327599e+25 4.2012039964445827e+25 1.1420056438012293e+26 3.1042929865047826e+26 8.4383428037470738e+26 2.2937792813113457e+27 6.2351382164292627e+27
g: -0.36787945032119751 -0.27067059278488159 -0.14936122298240662 -0.073262564837932587 -0.033689741045236588 -0.014872515574097633 -0.0063831745646893978 -0.0026837014593183994 -0.0011106884339824319 -0.00045399941154755652 -0.00018371877376921475 -7.3730567237362266e-05 -2.9384291337919421e-05 -1.1641405762929935e-05 -4.5885362851549871e-06 -1.8005634956352878e-06 -7.0378973759943619e-07 -2.7413975089984888e-07 -1.0645318582191976e-07 -4.122309249510181e-08 -1.5923385277005764e-08 -6.1368328196920174e-09 -2.3602335641470518e-09 -9.0603280433754207e-10 -3.471987974901225e-10 -1.3283640853956058e-10 -5.0747316071575455e-11 -1.9360334516105304e-11 -7.3766357605586919e-12 -2.8072891233854591e-12 -1.0671687058344537e-12 -4.0525363013271809e-13 -1.5374336461045079e-13 -5.8272932648966574e-14 -2.206792725173521e-14 -8.3502896573240185e-15 -3.1572303958374423e-15 -1.192871523299666e-15 -4.5038112940094517e-16 -1.699343306816689e-16 -6.4078234365689933e-17 -2.4148019279880996e-17 -9.095073346605316e-18 -3.4237017961279004e-18 -1.2881348671140216e-18 -4.8440896082993503e-19 -1.8207810463107454e-19 -6.8407959442757565e-20 -2.569017156788846e-20 -9.6437611040447661e-21 -3.6186962678628536e-21 -1.357346940624028e-21 -5.0894276378983633e-22 -1.9076220526102576e-22 -7.1477077345829229e-23 -2.6773039821769189e-23 -1.0025130740057213e-23 -3.7527418826161672e-24 -1.4043593713279384e-24 -5.2539147015754201e-25 -1.9650207139502987e-25 -7.3474141096711539e-26 -2.7465588329293218e-26 -1.0264406957471058e-26
a: 1.6487212181091309 1.2840254306793213 1.1331484317779541 1.0644944906234741 1.0317434072494507 1.0157476663589478 1.007843017578125 1.0039138793945313 1.0019550323486328 1.0009770393371582 1.0004884004592896 1.000244140625
// These are common to both W0 and W-1
b: 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625 0.001953125 0.0009765625 0.00048828125 0.000244140625
*/
// Creates if no file exists, & uses default overwrite/ ios::replace.
//const char filename[] = // "lambert_w_lookup_table.ipp"; // Write to same folder as generator:
//"I:/modular-boost/libs/math/include/boost/math/special_functions/lambert_w_lookup_table.ipp";
const char filename[] = "lambert_w_lookup_table.ipp";
std::ofstream fout(filename, std::ios::out); // File output stream.
// 128-bit precision type (so that full precision if long double type uses 128-bit).
// typedef cpp_bin_float_quad table_lookup_t; // Output using max_digits10 for 37 decimal digit precision.
// (This is the precision for the tables output as a C++ program,
// not the precision used by the lambert_w.hpp, that defines another typedef lookup_t, default double.
typedef cpp_bin_float_50 table_lookup_t; // Compute tables to 50 decimal digit precision to avoid slight inaccuracy from repeated multiply.
// But Output using max_digits10 for 37 decimal digit precision.
int main()
{
std::cout << "Lambert W table lookup values." << std::endl;
if (!fout.is_open())
{ // File failed to open OK.
std::cerr << "Open file " << filename << " failed!" << std::endl;
std::cerr << "errno " << errno << std::endl;
return -1;
}
try
{
std::cout << "Lambert W test values writing to file " << filename << std::endl;
int output_precision = std::numeric_limits<cpp_bin_float_quad>::max_digits10; // 37 decimal digits.
fout.precision(output_precision);
fout <<
"// Copyright Paul A. Bristow 2017." "\n"
"// Distributed under the Boost Software License, Version 1.0." "\n"
"// (See accompanying file LICENSE_1_0.txt" "\n"
"// or copy at http://www.boost.org/LICENSE_1_0.txt)" "\n"
"\n"
"// " << filename << "\n\n"
"// A collection of 128-bit precision integral z argument Lambert W values computed using "
<< output_precision << " decimal digits precision.\n"
"// C++ floating-point precision is 128-bit long double.\n"
"// Output as "
<< std::numeric_limits<table_lookup_t>::max_digits10
<< " decimal digits, suffixed L.\n"
"\n"
"// C++ floating-point type is provided by lambert_w.hpp typedef." "\n"
"// For example: typedef lookup_t double; (or float or long double)" "\n"
"\n"
"// Written by " << __FILE__ << " " << __TIMESTAMP__ << "\n"
<< std::endl;
fout << "// Sizes of arrays of z values for Lambert W[0], W[1] ... W[64]"
"\"n""and W[-1], W[-2] ... W[-64]." << std::endl;
fout << "\nnamespace boost {\nnamespace math {\nnamespace lambert_w_detail {\nnamespace lambert_w_lookup\n{ \n";
static constexpr std::size_t noof_sqrts = 12;
static constexpr std::size_t noof_halves = 12;
fout << "static constexpr std::size_t noof_sqrts = " << noof_sqrts << ";" << std::endl;
fout << "static constexpr std::size_t noof_halves = " << noof_halves << ";" << std::endl; // Common to both branches.
static constexpr std::size_t noof_w0zs = 65; // F[k] 0 <= k <= 64. f[0] = F[0], f[64] = F[64]
static constexpr std::size_t noof_w0es = 66; // noof_w0zs +1 for gratuitous extra power.
static constexpr std::size_t noof_wm1zs = 64; // G[k] 1 <= k <= 64. (W-1 = 0 would be z = -infinity, so not stored in array) g[0] == G[1], g[63] = G[64]
static constexpr std::size_t noof_wm1es = 64; //
fout << "static constexpr std::size_t noof_w0es = " << noof_w0zs << ";" << std::endl;
fout << "static constexpr std::size_t noof_w0zs = " << noof_w0zs << ";" << std::endl;
fout << "static constexpr std::size_t noof_wm1es = " << noof_wm1zs << ";" << std::endl;
fout << "static constexpr std::size_t noof_wm1zs = " << noof_wm1zs << ";" << std::endl;
// Defining actual lookup table sqrts of e^k, e^-k = 1/e, etc.
table_lookup_t halves[noof_halves]; // 0.5 0.25 0.125, 0.0625 ... 0.0002441, halves of previous elements.
table_lookup_t sqrtw0s[noof_sqrts]; // 0.6065 0.7788, 0.8824 ... 0.9997, sqrt of previous elements.
table_lookup_t sqrtwm1s[noof_sqrts]; // 1.6487, 1.2840 1.1331 ... 1.00024 , sqrt of previous elements.
table_lookup_t w0es[noof_w0es]; // lambert_w[k] for W0 branch. 2.7182, 1, 0.3678, 0.1353, ... 1.6038e-28
table_lookup_t w0zs[noof_w0zs]; // lambert_w[k] for W0 branch. 0. , 2.7182, 14.77, 60.2566 ... 1.445e+29, 3.990e+29.
table_lookup_t wm1es[noof_wm1es]; // lambert_w[k] for W-1 branch. 2.7182 7.38905 20.085 ... 6.235e+27
table_lookup_t wm1zs[noof_wm1zs]; // lambert_w[k] for W-1 branch. -0.3678 ... -1.0264e-26
// e values lambert_w[k] for W-1 branch. 2.7182 1. 0.3678 0.1353 0.04978 ... 4.359e-28 1.603e-28
using boost::math::constants::e;
using boost::math::constants::exp_minus_one;
{ // z values for integral W F[k] and powers for W0 branch.
table_lookup_t ej = 1; //
w0es[0] = e<table_lookup_t>(); // e = 2.7182 exp(-1) - 1/e exp_minus_one = 0.36787944.
w0es[1] = 1; // e^0
w0zs[0] = 0; // F[0] = 0 or W0 branch.
for (int j = 1, jj = 2; jj != noof_w0es; ++jj)
{
w0es[jj] = w0es[j] * exp_minus_one<table_lookup_t>(); // previous * 0.36787944.
ej *= e<table_lookup_t>(); // * 2.7182
w0zs[j] = j * ej; // For W0 branch.
j = jj; // Previous.
} // for
}
// Checks on accuracy of W0 exponents.
// Checks on e power w0es
// w0es[64] = 4.3596100000630809736231248158884615452e-28
// N[e ^ -63, 37] = 4.359610000063080973623124815888459643*10^-28
// So slight loss at last decimal place.
// Checks on accuracy of z for integral W0 w0zs
// w0zs[0] = 0, z = -infinity expected? but = zero
// w0zs[1] = 2.7182818284590452353602874713526623144
// w0[2] z = 14.778112197861300454460854921150012956
// w0zs[64] = 3.9904954117194348050619127737142022705e+29
// N[productlog(0, 3.9904954117194348050619127737142022705 10^+29), 37]
// = 63.99999999999999999999999999999999547
// = 64.0 to 34 decimal digits, so exact. :-)
{ // z values for integral powers G[k] and e^-k for W-1 branch.
// Fukushima indexing of G (k-1) differs by 1 from(k).
// G[0] = -infinity, so his first item in array g[0] is -0.3678 which is G[1]
// and last is g[63] = G[64] = 1.026e-26
table_lookup_t e1 = 1. / e<table_lookup_t>(); // 1/e = 0.36787944117144233
table_lookup_t ej = e1;
wm1es[0] = e<table_lookup_t>(); // e = 2.7182
wm1zs[0] = -e1; // -1/e = - 0.3678
for (int j = 0, jj = 1; jj != noof_wm1zs; ++jj)
{
ej *= e1; // * 0.3678..
wm1es[jj] = wm1es[j] * e<table_lookup_t>();
wm1zs[jj] = -(jj + 1) * ej;
j = jj; // Previous.
} // for
}
// Checks on W-1 branch accuracy wm1es by comparing with Wolfram.
// exp powers:
// N[e ^ 1, 37] 2.718281828459045235360287471352662498
// wm1es[0] = 2.7182818284590452353602874713526623144 - close enough.
// N[e ^ 3, 37] 20.08553692318766774092852965458171790
// computed wm1es[2] 2.0085536923187667740928529654581712847e+01L OK
// e ^ 66 = 4.6071866343312915426773184428060086893349003037096040 * 10^28
// N[e ^ 66, 34] = 4.607186634331291542677318442806009 10^28
// computed 4.6071866343312915426773184428059867859e+28L
// N[e ^ 66, 37] = 4.607186634331291542677318442806008689*10^28
// so suffering some loss of precision by repeated multiplication computation.
// :-(
// Repeat with cpp_bin_float_50 and correct to 37th decimal digit.
// 4.60718663433129154267731844280600868933490030370929982
// output std::cout.precision(std::numeric_limits<cpp_bin_float_quad>::max_digits10) as 37 decimal digits.
// 4.6071866343312915426773184428060086893e+28L
// N[e ^ 66, 37] = 4.607186634331291542677318442806008689*10^28
// Agrees exactly for 37th place, so should be read in to nearest representable value.
// Checks W-1 branch z values wm1zs
// W-1[0] = -2.7067056647322538378799898994496883858e-01
// w-1[1] = -1.4936120510359182893802724695018536337e-01
// wm1zs[65] -1.4325445274604020119111357113179868158e-27
// N[productlog(-1, -1.4325445274604020119111357113179868158* 10^-27), 37]
// = -65.99999999999999999999999999999999955
// = -66 accurately, so this is OK.
// z = 66 * e^66 =
// =N[-66*e ^ -66, 37]
// -1.432544527460402011911135711317986177*10^-27
// wm1zs[65] -1.4325445274604020119111357113179868158e-27
// which agrees well enough to 34 decimal digits.
// last wm1zs[65] = 0 is unused.
// Halves, common to both W0 and W-1.
halves[0] = static_cast<table_lookup_t>(0.5); // Exactly representable.
for (int j = 0; j != noof_sqrts -1; ++j)
{
halves[j+1] = halves[j] / 2; // Half previous element (/2 will be optimised better?).
} // for j
// W0 sqrts
sqrtw0s[0] = static_cast<table_lookup_t>(0.606530659712633423603799534991180453441918135487186955682L);
for (int j = 0; j != noof_sqrts -1; ++j)
{
sqrtw0s[j+1] = sqrt(sqrtw0s[j]); // Sqrt of previous element. sqrt(1/e), sqrt(sqrt(1/e)) ...
} // for j
// W-1 sqrts
sqrtwm1s[0] = root_e<table_lookup_t>();
for (int j = 0; j != noof_sqrts -1; ++j)
{
sqrtwm1s[j+1] = sqrt(sqrtwm1s[j]); // Sqrt of previous element. sqrt(1/e), sqrt(sqrt(1/e)) ...
} // for j
// Output values as C++ arrays,
// using static constexpr as static and constexpr as possible for platform.
fout << std::noshowpoint; // Do show NOT trailing zeros for halves and sqrts values.
fout <<
"\n" "static constexpr lookup_t halves[noof_halves] = " //
"\n" "{ // Common to Lambert W0 and W-1 (and exactly representable)." << "\n ";
for (int i = 0; i != noof_halves; i++)
{
fout << halves[i] << 'L';
if (i != noof_halves - 1)
{ // Omit trailing comma on last element.
fout << ", ";
}
else
{
fout << std::endl;
}
}
fout << "}; // halves, 0.5, 0.25, ... 0.000244140625, common to W0 and W-1." << std::endl;
fout <<
"\n" "static constexpr lookup_t sqrtw0s[noof_sqrts] = " //
"\n" "{ // For Lambert W0 only." << "\n ";
for (int i = 0; i != noof_sqrts; i++)
{
fout << sqrtw0s[i] << 'L';
if (i != noof_sqrts - 1)
{ // Omit trailing comma on last element.
fout << ", ";
}
else
{
fout << std::endl;
}
}
fout << "}; // sqrtw0s" << std::endl;
fout <<
"\n" "static constexpr lookup_t sqrtwm1s[noof_sqrts] = " //
"\n" "{ // For Lambert W-1 only." << "\n ";
for (int i = 0; i != noof_sqrts; i++)
{
fout << sqrtwm1s[i] << 'L';
if (i != noof_sqrts - 1)
{ // Omit trailing comma on last element.
fout << ", ";
}
else
{
fout << std::endl;
}
}
fout << "}; // sqrtwm1s" << std::endl;
fout << std::scientific // May be needed to avoid very large dddddddddddddddd.ddddddddddddddd output?
<< std::showpoint; // Do show trailing zeros for sqrts and halves.
// Two W0 arrays
fout << // W0 e values.
// Fukushima code generates an extra unused power, but it is not output by using noof_w0zs instead of noof_w0es.
"\n" "static constexpr lookup_t w0es[noof_w0zs] = " //
"\n" "{ // Fukushima e powers array e[0] = 2.718, 1., e[2] = e^-1 = 0.135, e[3] = e^-2 = 0.133 ... e[64] = 4.3596100000630809736231248158884615452e-28." << "\n ";
for (int i = 0; i != noof_w0zs; i++)
{
fout << w0es[i] << 'L';
if (i != noof_w0es - 1)
{ // Omit trailing comma on last element.
fout << ", ";
}
if (i % 4 == 0)
{
fout << "\n ";
}
}
fout << "\n}; // w0es" << std::endl;
fout << // W0 z values for W[1], .
"\n" "static constexpr lookup_t w0zs[noof_w0zs] = " //
"\n" "{ // z values for W[0], W[1], W[2] ... W[64] (Fukushima array Fk). " << "\n ";
for (int i = 0; i != noof_w0zs; i++)
{
fout << w0zs[i] << 'L';
if (i != noof_w0zs - 1)
{ // Omit trailing comma on last element.
fout << ", ";
}
if (i % 4 == 0)
{
fout << "\n ";
}
}
fout << "\n}; // w0zs" << std::endl;
// Two arrays for w-1
fout << // W-1 e values.
"\n" "static constexpr lookup_t wm1es[noof_wm1es] = " //
"\n" "{ // Fukushima e array e[0] = e^1 = 2.718, e[1] = e^2 = 7.39 ... e[64] = 4.60718e+28." << "\n ";
for (int i = 0; i != noof_wm1es; i++)
{
fout << wm1es[i] << 'L';
if (i != noof_wm1es - 1)
{ // Omit trailing comma on last element.
fout << ", ";
}
if (i % 4 == 0)
{
fout << "\n ";
}
}
fout << "\n}; // wm1es" << std::endl;
fout << // Wm1 z values for integral K.
"\n" "static constexpr lookup_t wm1zs[noof_wm1zs] = " //
"\n" "{ // Fukushima G array of z values for integral K, (Fukushima Gk) g[0] (k = -1) = 1 ... g[64] = -1.0264389699511303e-26." << "\n ";
for (int i = 0; i != noof_wm1zs; i++)
{
fout << wm1zs[i] << 'L';
if (i != noof_wm1zs - 1)
{ // Omit trailing comma on last element.
fout << ", ";
}
if (i % 4 == 0)
{ // 4 values per line.
fout << "\n ";
}
}
fout << "\n}; // wm1zs" << std::endl;
fout << "} // namespace lambert_w_lookup\n} // namespace lambert_w_detail\n} // namespace math\n} // namespace boost" << std::endl;
}
catch (std::exception& ex)
{
std::cout << "Exception " << ex.what() << std::endl;
}
fout.close();
return 0;
} // int main()
/*
Original arrays as output by Veberic/Fukushima code:
w0 branch
W-1 branch
e: 2.7182818284590451 7.3890560989306495 20.085536923187664 54.598150033144229 148.41315910257657 403.42879349273500 1096.6331584284583 2980.9579870417274 8103.0839275753815 22026.465794806707 59874.141715197788 162754.79141900383 442413.39200892020 1202604.2841647759 3269017.3724721079 8886110.5205078647 24154952.753575277 65659969.137330450 178482300.96318710 485165195.40978980 1318815734.4832134 3584912846.1315880 9744803446.2488918 26489122129.843441 72004899337.385788 195729609428.83853 532048240601.79797 1446257064291.4734 3931334297144.0371 10686474581524.447 29048849665247.383 78962960182680.578 214643579785915.75 583461742527454.00 1586013452313428.3 4311231547115188.5 11719142372802592. 31855931757113704. 86593400423993600. 2.3538526683701958e+17 6.3984349353005389e+17 1.7392749415204982e+18 4.7278394682293381e+18 1.2851600114359284e+19 3.4934271057485025e+19 9.4961194206024286e+19 2.5813128861900616e+20 7.0167359120976157e+20 1.9073465724950953e+21 5.1847055285870605e+21 1.4093490824269355e+22 3.8310080007165677e+22 1.0413759433029062e+23 2.8307533032746866e+23 7.6947852651419974e+23 2.0916594960129907e+24 5.6857199993359170e+24 1.5455389355900996e+25 4.2012104037905024e+25 1.1420073898156810e+26 3.1042979357019109e+26 8.4383566687414291e+26 2.2937831594696028e+27 6.2351490808115970e+27
g: -0.36787944117144233 -0.27067056647322540 -0.14936120510359185 -0.073262555554936742 -0.033689734995427351 -0.014872513059998156 -0.0063831737588816162 -0.0026837010232200957 -0.0011106882367801162 -0.00045399929762484866 -0.00018371870869270232 -7.3730548239938541e-05 -2.9384282290753722e-05 -1.1641402067449956e-05 -4.5885348075273889e-06 -1.8005627955081467e-06 -7.0378941219347870e-07 -2.7413963540482742e-07 -1.0645313231320814e-07 -4.1223072448771179e-08 -1.5923376898615014e-08 -6.1368298043116385e-09 -2.3602323152914367e-09 -9.0603229062698418e-10 -3.4719859662410078e-10 -1.3283631472964657e-10 -5.0747278046555293e-11 -1.9360320299432585e-11 -7.3766303773930841e-12 -2.8072868906520550e-12 -1.0671679036256938e-12 -4.0525329757101402e-13 -1.5374324278841227e-13 -5.8272886672428505e-14 -2.2067908660514491e-14 -8.3502821888768594e-15 -3.1572276215253082e-15 -1.1928704609782527e-15 -4.5038074274761624e-16 -1.6993417021166378e-16 -6.4078169762734621e-17 -2.4147993510032983e-17 -9.0950634616416589e-18 -3.4236981860988753e-18 -1.2881333612472291e-18 -4.8440839844747606e-19 -1.8207788854829806e-19 -6.8407875971564987e-20 -2.5690139750481013e-20 -9.6437492398196038e-21 -3.6186918227652047e-21 -1.3573451162272088e-21 -5.0894204288896066e-22 -1.9076194289884390e-22 -7.1476978375412793e-23 -2.6773000149758669e-23 -1.0025115553818592e-23 -3.7527362568743735e-24 -1.4043571811296988e-24 -5.2539064576179218e-25 -1.9650175744554385e-25 -7.3474021582506962e-26 -2.7465543000397468e-26 -1.0264389699511303e-26
a: 1.6487212707001282 1.2840254166877414 1.1331484530668263 1.0644944589178595 1.0317434074991028 1.0157477085866857 1.0078430972064480 1.0039138893383477 1.0019550335910028 1.0009770394924165 1.0004884004786945 1.0002441704297478
b: 0.50000000000000000 0.25000000000000000 0.12500000000000000 0.062500000000000000 0.031250000000000000 0.015625000000000000 0.0078125000000000000 0.0039062500000000000 0.0019531250000000000 0.00097656250000000000 0.00048828125000000000 0.00024414062500000000
*/
|