File: MultiArray.xml

package info (click to toggle)
boost1.83 1.83.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 545,632 kB
  • sloc: cpp: 3,857,086; xml: 125,552; ansic: 34,414; python: 25,887; asm: 5,276; sh: 4,799; ada: 1,681; makefile: 1,629; perl: 1,212; pascal: 1,139; sql: 810; yacc: 478; ruby: 102; lisp: 24; csh: 6
file content (1019 lines) | stat: -rw-r--r-- 32,705 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
<sect1 id="MultiArray"><title>MultiArray Concept</title>


<para>The MultiArray
concept defines an interface to hierarchically nested
containers.  It specifies operations for accessing elements,
traversing containers, and creating views
of array data.
MultiArray defines
a flexible memory model that accomodates
a variety of data layouts.
</para>

<para>
At each level (or dimension) of a MultiArray's
container hierarchy lie a set of ordered containers, each of which
contains the same number and type of values. The depth of this
container hierarchy is the MultiArray's <emphasis>dimensionality</emphasis>. 
MultiArray is recursively defined; the
containers at each level of the container hierarchy model
MultiArray as well. While each dimension of a MultiArray
has its own size, the list of sizes for all dimensions 
defines the <emphasis>shape</emphasis> of the entire MultiArray.
At the base of this hierarchy lie 1-dimensional
MultiArrays.  Their values are the contained
objects of interest and not part of the container hierarchy. These are
the MultiArray's elements.
</para>


<para>
Like other container concepts, MultiArray exports
iterators to traverse its values. In addition, values can be
addressed directly using the familiar bracket notation.
</para>

<para>
MultiArray also specifies
routines for creating
specialized views. A <emphasis>view</emphasis> lets you treat a 
subset of the underlying
elements in a MultiArray as though it were a separate
MultiArray. Since a view refers to the same underlying elements,
changes made to a view's elements will be reflected in the original
MultiArray. For
example, given a 3-dimensional "cube" of elements, a 2-dimensional
slice can be viewed as if it were an independent
MultiArray.

Views are created using <literal>index_gen</literal> and
<literal>index_range</literal> objects.
<literal>index_range</literal>s denote elements from a certain
dimension that are to be included in a
view. <literal>index_gen</literal> aggregates range data and performs
bookkeeping to determine the view type to be returned.

MultiArray's <literal>operator[]</literal>
 must be passed the result
of <literal>N</literal> chained calls to 
<literal>index_gen::operator[]</literal>, i.e.

<programlisting>indices[a0][a1]...[aN];
</programlisting>

where <literal>N</literal> is the 
MultiArray's dimensionality and
<literal>indices</literal> an object of type <literal>index_gen</literal>.

The view type is dependent upon the number of degenerate dimensions
specified to <literal>index_gen</literal>.  A degenerate dimension
occurs when a single-index is specified to
<literal>index_gen</literal> for a certain dimension.  For example, if
<literal>indices</literal> is an object of type
<literal>index_gen</literal>, then the following example:

<programlisting>indices[index_range(0,5)][2][index_range(0,4)];
</programlisting>

has a degenerate second dimension.  The view generated from the above
specification will have 2 dimensions with shape <literal>5 x 4</literal>.
If the "<literal>2</literal>" above were replaced with
another <literal>index_range</literal> object, for example:

<programlisting>indices[index_range(0,5)][index_range(0,2)][index_range(0,4)];
</programlisting>

then the view would have 3 dimensions.</para>

<para>
MultiArray exports
information regarding the memory
layout of its contained elements. Its memory model for elements is
completely defined by 4 properties: the origin, shape, index bases,
and strides.  The origin is the address in memory of the element
accessed as <literal>a[0][0]...[0]</literal>, where
<literal>a</literal> is a MultiArray. The shape is a list of numbers
specifying the size of containers at each dimension.  For example, the
first extent is the size of the outermost container, the second extent
is the size of its subcontainers, and so on. The index bases are a
list of signed values specifying the index of the first value in a
container. All containers at the same dimension share the same index
base.  Note that since positive index bases are
possible, the origin need not exist in order to determine the location
in memory of the MultiArray's elements.
  The strides determine how index values are mapped to memory offsets. 
They accomodate a
number of possible element layouts.  For example, the elements of a 2
dimensional array can be stored by row (i.e., the elements of each row
are stored contiguously) or by column (i.e., the elements of each
column are stored contiguously).
</para>

<para>
Two concept checking classes for the MultiArray concepts
(<literal>ConstMultiArrayConcept</literal> and
<literal>MutableMultiArrayConcept</literal>) are in the namespace
<literal>boost::multi_array_concepts</literal> in
<literal>&lt;boost/multi_array/concept_checks.hpp&gt;</literal>.
</para>


<sect2><title>Notation</title>
<para>What follows are the descriptions of symbols that will be used
to describe the MultiArray interface.</para>
    <table>
      <title>Notation</title>
      <tgroup cols="2">
	<tbody>
	  <row>
	      <entry><literal>A</literal></entry>
	      <entry>A type that is a model of MultiArray
</entry>
	    </row>
	    <row>
	      <entry><literal>a,b</literal></entry>
	      <entry>Objects of type <literal>A</literal></entry>
	    </row>
	    <row>
	      <entry><literal>NumDims</literal></entry>
	      <entry>The numeric dimension parameter associated with
<literal>A</literal>.</entry>
	    </row>
	    <row>
	      <entry><literal>Dims</literal></entry>
	      <entry>Some numeric dimension parameter such that 
<literal>0&lt;Dims&lt;NumDims</literal>.
</entry>
	  </row>
	  <row>
	      <entry><literal>indices</literal></entry>
	      <entry>An object created by some number of chained calls
to <literal>index_gen::operator[](index_range)</literal>.</entry>
	    </row>
	    <row>
	      <entry><literal>index_list</literal></entry>
	      <entry>An object whose type models
<ulink url="../../utility/Collection.html">Collection</ulink>
</entry>
	    </row>
	    <row>
	      <entry><literal>idx</literal></entry>
	      <entry>A signed integral value.</entry>
	    </row>
	    <row>
	      <entry><literal>tmp</literal></entry> 
	      <entry>An object of type
	      <literal>boost::array&lt;index,NumDims&gt;</literal></entry>
	    </row>
	</tbody>
      </tgroup>
    </table>
</sect2>

<sect2><title>Associated Types</title>
<para>
</para>
<table><title>Associated Types</title>
<tgroup cols="2">

<thead>
<row>
<entry>Type</entry>
<entry>Description</entry>
</row>
</thead>

<tbody>

<row>
<entry><literal>value_type</literal></entry>

<entry>This is the value type of the container.
  If <literal>NumDims == 1</literal>, then this is
<literal>element</literal>. Otherwise, this is the value type of the
immediately nested containers.
</entry>
</row>

<row>
<entry>
<literal>reference</literal>
</entry>

<entry>
This is the reference type of the contained value. 
If <literal>NumDims == 1</literal>, then this is 
<literal>element&amp;</literal>. Otherwise, this is the same type as
<literal>template subarray&lt;NumDims-1&gt;::type</literal>.
</entry>
</row>

<row>
<entry>
<literal>const_reference</literal>
</entry>
<entry>
This is the const reference type of the contained value.
If <literal>NumDims == 1</literal>, then this is  
<literal>const element&amp;</literal>. Otherwise, this is the same
type as
<literal>template const_subarray&lt;NumDims-1&gt;::type</literal>.
</entry>
</row>

<row>
<entry>
<literal>size_type</literal>
</entry>
<entry>
This is an unsigned integral type.  It is primarily used to specify array shape.
</entry>
</row>


<row>
<entry>
<literal>difference_type</literal>
</entry>
<entry>
This is a signed integral type used to represent the distance between two
iterators. It is the same type as
<literal>std::iterator_traits&lt;iterator&gt;::difference_type</literal>.
</entry>
</row>

<row>
<entry><literal>iterator</literal></entry>
<entry>
This is an iterator over the values of <literal>A</literal>.
If <literal>NumDims == 1</literal>, then it models 
<ulink url="http://www.boost.org/doc/html/RandomAccessIterator.html">
<literal>Random Access Iterator</literal></ulink>. 
Otherwise it models 
<ulink url="./iterator_categories.html#concept_RandomAccessTraversalIterator">
Random Access Traversal Iterator</ulink>,
<ulink url="./iterator_categories.html#concept_ReadableIterator">
Readable Iterator</ulink>,
<ulink url="./iterator_categories.html#concept_WritableIterator">
Writable Iterator</ulink>, and 
<ulink url="http://www.boost.org/doc/html/OutputIterator.html">
<literal>Output Iterator</literal></ulink>.
</entry>
</row>

<row>
<entry>
<literal>const_iterator</literal>
</entry>
<entry>
This is the const iterator over the values of <literal>A</literal>.
</entry>
</row>
<row>

<entry>
<literal>reverse_iterator</literal>
</entry>
<entry>
This is the reversed iterator, used to iterate backwards over the values of 
<literal>A</literal>.
</entry>
</row>

<row>
<entry>
<literal>const_reverse_iterator</literal>
</entry>
<entry>
This is the reversed const iterator.
<literal>A</literal>.
</entry>
</row>
<row>

<entry>
<literal>element</literal>
</entry>
<entry>
This is the type of objects stored at the base of the
hierarchy of MultiArrays. It is the same as
<literal>template subarray&lt;1&gt;::value_type</literal>
</entry>
</row>

<row>
<entry>
<literal>index</literal>
</entry>
<entry>
This is a signed integral type used for indexing into <literal>A</literal>. It 
is also used to represent strides and index bases.
</entry>
</row>

<row>
<entry>
<literal>index_gen</literal>
</entry>
<entry>
This type is used to create a tuple of <literal>index_range</literal>s 
passed to <literal>operator[]</literal> to create
an <literal>array_view&lt;Dims&gt;::type</literal> object.
</entry>
</row>

<row>
<entry>
<literal>index_range</literal>
</entry>
<entry>
This type specifies a range of indices over some dimension of a
MultiArray.  This range will be visible through an 
<literal>array_view&lt;Dims&gt;::type</literal> object.
</entry>
</row>

<row>
<entry>
<literal>template subarray&lt;Dims&gt;::type</literal>
</entry>
<entry>
This is subarray type with <literal>Dims</literal> dimensions.
It is the reference type of the <literal>(NumDims - Dims)</literal>
dimension of <literal>A</literal> and also models
MultiArray.
</entry>
</row>

<row>
<entry>
<literal>template const_subarray&lt;Dims&gt;::type</literal>
</entry>
<entry>
This is the const subarray type.
</entry>
</row>

<row>
<entry>
<literal>template array_view&lt;Dims&gt;::type</literal>
</entry>
<entry>
This is the view type with <literal>Dims</literal> dimensions.  It is
returned by calling <literal>operator[](<literal>indices</literal>)</literal>.
It models MultiArray.
</entry>
</row>

<row>
<entry>
<literal>template
const_array_view&lt;Dims&gt;::type</literal>
</entry>
<entry>
This is the const view type with <literal>Dims</literal> dimensions.
</entry>
</row>

</tbody>
</tgroup>
</table>

</sect2>


  <sect2><title>Valid expressions</title>
    
    <table><title>Valid Expressions</title>
      <tgroup cols="3">
	<thead>
	  <row>
	    <entry>Expression</entry>
	    <entry>Return type</entry>
	    <entry>Semantics</entry>
	  </row>
	</thead>
	<tbody>
	  <row>
	    <entry><literal>A::dimensionality</literal></entry>
	    <entry><literal>size_type</literal></entry>
	    <entry>This compile-time constant represents the number of
dimensions of the array (note that 
<literal>A::dimensionality == NumDims</literal>).</entry>
	  </row>
	  <row>
	    <entry><literal>a.shape()</literal></entry>
	    <entry><literal>const size_type*</literal></entry>
	    <entry>
This returns a list of <literal>NumDims</literal> elements specifying the
extent of each array dimension.
</entry>
	  </row>

	  <row>
	    <entry><literal>a.strides()</literal></entry>
	    <entry><literal>const index*</literal></entry>
	    <entry>
This returns a list of <literal>NumDims</literal> elements specifying the
stride associated with each array dimension. When accessing values,
strides is used to calculate an element's location in memory.
</entry>
	  </row>

	  <row>
	    <entry><literal>a.index_bases()</literal></entry>
	    <entry><literal>const index*</literal></entry>
	    <entry>
This returns a list of <literal>NumDims</literal> elements specifying the
numeric index of the first element for each array dimension.
</entry>
	  </row>
	  <row>
	    <entry><literal>a.origin()</literal></entry>
	    <entry>
<literal>element*</literal> if <literal>a</literal> is mutable,
<literal>const element*</literal> otherwise.
</entry>
<entry>
This returns the address of the element accessed by the expression
<literal>a[0][0]...[0].</literal>. If the index bases are positive,
this element won't exist, but the address can still be used to locate
a valid element given its indices.
</entry>
	  </row>
	  <row>
	    <entry><literal>a.num_dimensions()</literal></entry>
	    <entry><literal>size_type</literal></entry>
	    <entry>This returns the number of dimensions of the array
(note that <literal>a.num_dimensions() == NumDims</literal>).</entry>
	  </row>

	    <row>
	      <entry><literal>a.num_elements()</literal></entry>
	      <entry><literal>size_type</literal></entry>
	      <entry>This returns the number of elements contained
in the array. It is equivalent to the following code:
<programlisting>
std::accumulate(a.shape(),a.shape+a.num_dimensions(),
    size_type(1),std::multiplies&lt;size_type&gt;());
</programlisting>
</entry>
	  </row>

	  <row>
	    <entry><literal>a.size()</literal></entry>
	    <entry><literal>size_type</literal></entry>
	    <entry>
This returns the number of values contained in
<literal>a</literal>. It is equivalent to <literal>a.shape()[0];</literal>
</entry>
	  </row>
	  <row>
	    <entry><literal>a(index_list)</literal></entry>
            <entry>
<literal>element&amp;</literal>;  if <literal>a</literal> is mutable,
<literal>const element&amp;</literal> otherwise.
            </entry>
	    <entry>
This expression accesses a specific element of
<literal>a</literal>.<literal>index_list</literal> is the unique set
of indices that address the element returned.  It is 
equivalent to the following code (disregarding intermediate temporaries):
<programlisting>
    // multiply indices by strides
    std::transform(index_list.begin(), index_list.end(),
      a.strides(), tmp.begin(), std::multiplies&lt;index&gt;()),

    // add the sum of the products to the origin
    *std::accumulate(tmp.begin(), tmp.end(), a.origin());
</programlisting>
</entry>
	  </row>

	  <row>
	    <entry><literal>a.begin()</literal></entry>
	    <entry>
<literal>iterator</literal> if <literal>a</literal> is mutable,
<literal>const_iterator</literal> otherwise.
            </entry>
	    <entry>This returns an iterator pointing to the beginning of
<literal>a</literal>.</entry>
	  </row>

	  <row>
	    <entry><literal>a.end()</literal></entry>
	    <entry>
<literal>iterator</literal> if <literal>a</literal> is mutable,
<literal>const_iterator</literal> otherwise.
            </entry>
	      <entry>This returns an iterator pointing to the end of
<literal>a</literal>.</entry>
	  </row>

	  <row>
	    <entry><literal>a.rbegin()</literal></entry>
	    <entry>
<literal>reverse_iterator</literal> if <literal>a</literal> is mutable, 
<literal>const_reverse_iterator</literal> otherwise.
            </entry>
	    <entry>This returns a reverse iterator pointing to the
beginning of <literal>a</literal> reversed.
</entry>
	  </row>

	  <row>
	    <entry><literal>a.rend()</literal></entry>
	    <entry>
<literal>reverse_iterator</literal> if <literal>a</literal> is mutable, 
<literal>const_reverse_iterator</literal> otherwise.
</entry>
	    <entry>
This returns a reverse iterator pointing to the end of <literal>a</literal>
reversed.
</entry>
</row>
	  <row>
	    <entry><literal>a[idx]</literal></entry>
	    <entry>
<literal>reference</literal> if <literal>a</literal> is mutable,
<literal>const_reference</literal> otherwise.
            </entry>
	    <entry>
This returns a reference type that is bound to the index
<literal>idx</literal> value of <literal>a</literal>.  Note that if
<literal>i</literal> is the index base for this dimension, the above
expression returns the <literal>(idx-i)</literal>th element (counting
from zero).  The expression is equivalent to
<literal>*(a.begin()+idx-a.index_bases()[0]);</literal>.
</entry>
	  </row>

	  <row>
	    <entry><literal>a[indices]</literal></entry>
	    <entry>
<literal>array_view&lt;Dims&gt;::type</literal> if
<literal>a</literal> is mutable,
<literal>const_array_view&lt;Dims&gt;::type</literal> otherwise.
            </entry>
	<entry>
This expression generates a view of the array determined by the
<literal>index_range</literal> and <literal>index</literal> values
 used to construct <literal>indices</literal>.
</entry>
      </row>
	    <row>
	      <entry><literal>a == b</literal></entry>
	      <entry>bool</entry>
	      <entry>This performs a lexicographical comparison of the
values of <literal>a</literal> and <literal>b</literal>.  The element
type must model <ulink url="https://www.boost.org/sgi/stl/EqualityComparable.html">EqualityComparable</ulink> for this
expression to be valid.</entry>
	    </row>
	    <row>
	      <entry><literal>a &lt; b</literal></entry>
	      <entry>bool</entry>
	      <entry>This performs a lexicographical comparison of the
values of <literal>a</literal> and <literal>b</literal>.  The element
type must model <ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this
expression to be valid.</entry>
	    </row>
	    <row>
	      <entry><literal>a &lt;= b</literal></entry>
	      <entry>bool</entry>
	      <entry>This performs a lexicographical comparison of the
values of <literal>a</literal> and <literal>b</literal>.  The element
type must model <ulink url="https://www.boost.org/sgi/stl/EqualityComparable.html">EqualityComparable</ulink> and
<ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this
expression to be valid.</entry>
	    </row>
	    <row>
	      <entry><literal>a &gt; b</literal></entry>
	      <entry>bool</entry>
	      <entry>This performs a lexicographical comparison of the
values of <literal>a</literal> and <literal>b</literal>.  The element
type must model <ulink url="https://www.boost.org/sgi/stl/EqualityComparable.html">EqualityComparable</ulink> and 
<ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this
expression to be valid.</entry>
	    </row>
	    <row>
	      <entry><literal>a &gt;= b</literal></entry>
	      <entry>bool</entry>
	      <entry>This performs a lexicographical comparison of the
values of <literal>a</literal> and <literal>b</literal>.  The element
type must model <ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this
expression to be valid.</entry>
	    </row>
    </tbody>
    </tgroup>
    </table>
    </sect2>


<sect2><title>Complexity guarantees</title>

<literal>begin()</literal> and <literal>end()</literal> execute in amortized
constant time.
<literal>size()</literal> executes in at most linear time in the 
MultiArray's size. 
</sect2>

<sect2>
<title>Invariants</title>
<table><title>Invariants</title>
      <tgroup cols="2">
	<tbody>
	  <row>
	    <entry>Valid range</entry>
	    <entry><literal>[a.begin(),a.end())</literal> is a valid range.
            </entry>
	  </row>

	  <row>
	    <entry>Range size</entry>
	    <entry>
<literal>a.size() == std::distance(a.begin(),a.end());</literal>.
</entry>
	  </row>

	  <row>
	    <entry>Completeness</entry>
	    <entry>
Iteration through the range 
<literal>[a.begin(),a.end())</literal> will traverse across every
<literal>value_type</literal> of <literal>a</literal>.
</entry>
	    </row>
	    <row>
	      <entry>Accessor Equivalence</entry>
	      <entry>
Calling <literal>a[a1][a2]...[aN]</literal> where <literal>N==NumDims</literal>
yields the same result as calling 
<literal>a(index_list)</literal>, where <literal>index_list</literal>
is a <ulink url="../../utility/Collection.html">Collection</ulink> containing the values <literal>a1...aN</literal>.
</entry>
	      </row>
	</tbody>
      </tgroup>
    </table>
  </sect2>

<sect2 id="view_types">
      <title>Associated Types for Views</title>
      <para>The following MultiArray  associated 
types define the interface for creating views of existing
MultiArrays. Their interfaces and roles in the
concept are described below.</para>
  
  <sect3 id="index_range">
    <title><literal>index_range</literal></title>

    <para><literal>index_range</literal> objects represent half-open
strided intervals.  They are aggregated (using an
<literal>index_gen</literal> object) and passed to 
a MultiArray's <literal>operator[]</literal>
to create an array view. When creating a view, 
each <literal>index_range</literal> denotes a range of
valid indices along one dimension of a MultiArray.
Elements that are accessed through the set of ranges specified will be 
included in the constructed view. In some cases, an
<literal>index_range</literal> is created without specifying start
or finish values.  In those cases, the object is interpreted to
start at the beginning of a MultiArray dimension
and end at its end.</para>

<para>
<literal>index_range</literal> objects can be constructed and modified 
several ways in order to allow convenient and clear expression of a
range of indices.  To specify ranges, <literal>index_range</literal>
supports a set of constructors, mutating member functions, and a novel 
specification involving inequality operators.  Using inequality
operators,  a half open range [5,10) can be specified as follows:
<programlisting>5 &lt;= index_range() &lt; 10;</programlisting> or
<programlisting>4 &lt; index_range() &lt;= 9;</programlisting> and so on.

The following describes the
<literal>index_range</literal> interface.
</para>

    <table>
      <title>Notation</title>
      <tgroup cols="2">
	<tbody>
	  <row>
	    <entry><literal>i</literal></entry>
	    <entry>An object of type <literal>index_range</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>idx,idx1,idx2,idx3</literal></entry>
	    <entry>Objects of type <literal>index</literal>.</entry>
	  </row>
	</tbody>
      </tgroup>
    </table>

    <table><title>Associated Types</title>
      <tgroup cols="2">
	<thead>
	  <row>
	    <entry>Type</entry>
	    <entry>Description</entry>
	  </row>
	</thead>
	<tbody>
	  <row>
	    <entry><literal>index</literal></entry>
	    <entry>This is a signed integral type. It is used to
specify the start, finish, and stride values.</entry>
	  </row>
	  <row>
	    <entry><literal>size_type</literal></entry>
	    <entry>This is an unsigned integral type. It is used to
report the size of the range an <literal>index_range</literal> 
represents.</entry>
	  </row>
	</tbody>
      </tgroup>
    </table>
    

    <table><title>Valid Expressions</title>
      <tgroup cols="3">
	<thead>
	  <row>
	    <entry>Expression</entry>
	    <entry>Return type</entry>
	    <entry>Semantics</entry>
	  </row>
	</thead>
	<tbody>
	  <row>
	    <entry><literal>index_range(idx1,idx2,idx3)</literal></entry>
	    <entry><literal>index_range</literal></entry>
	    <entry>This constructs an <literal>index_range</literal>
	    representing the interval <literal>[idx1,idx2)</literal>
 with stride <literal>idx3</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>index_range(idx1,idx2)</literal></entry>
	    <entry><literal>index_range</literal></entry>
	    <entry>This constructs an <literal>index_range</literal>
	    representing the interval <literal>[idx1,idx2)</literal>
 with unit stride. It is equivalent to
	    <literal>index_range(idx1,idx2,1)</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>index_range()</literal></entry>
	    <entry><literal>index_range</literal></entry>
	    <entry>This construct an <literal>index_range</literal>
with unspecified start and finish values.</entry>
	  </row>
	  <row>
	    <entry><literal>i.start(idx1)</literal></entry> 
	    <entry><literal>index&amp;</literal></entry>
	    <entry>This sets the start index of <literal>i</literal> to
	    <literal>idx</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>i.finish(idx)</literal></entry>
	    <entry><literal>index&amp;</literal></entry>
	    <entry>This sets the finish index of <literal>i</literal> to 
            <literal>idx</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>i.stride(idx)</literal></entry>
	    <entry><literal>index&amp;</literal></entry>
	    <entry>This sets the stride length of <literal>i</literal> to
            <literal>idx</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>i.start()</literal></entry>
	    <entry><literal>index</literal></entry>
	    <entry>This returns the start index of <literal>i</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>i.finish()</literal></entry>
	    <entry><literal>index</literal></entry>
	    <entry>This returns the finish index of <literal>i</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>i.stride()</literal></entry>
	    <entry><literal>index</literal></entry>
	    <entry>This returns the stride length of <literal>i</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>i.get_start(idx)</literal></entry> 
	    <entry><literal>index</literal></entry>
	    <entry>If <literal>i</literal> specifies a start
value, this is equivalent to <literal>i.start()</literal>. Otherwise it
returns <literal>idx</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>i.get_finish(idx)</literal></entry>
	    <entry><literal>index</literal></entry>
	    <entry>If <literal>i</literal> specifies a finish
value, this is equivalent to <literal>i.finish()</literal>. Otherwise it
returns <literal>idx</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>i.size(idx)</literal></entry>
	    <entry><literal>size_type</literal></entry>
	    <entry>If <literal>i</literal> specifies a both finish and
start values, this is equivalent to
<literal>(i.finish()-i.start())/i.stride()</literal>. Otherwise it
returns <literal>idx</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>i &lt; idx</literal></entry>
	    <entry><literal>index</literal></entry>
	    <entry>This is another syntax for specifying the finish
value. This notation does not include 
<literal>idx</literal> in the range of valid indices. It is equivalent to 
<literal>index_range(r.start(), idx, r.stride())</literal></entry>
	  </row>
	  <row>
	    <entry><literal>i &lt;= idx</literal></entry>
	    <entry><literal>index</literal></entry>
	    <entry>This is another syntax for specifying the finish
value. This notation includes 
<literal>idx</literal> in the range of valid indices. It is equivalent to 
<literal>index_range(r.start(), idx + 1, r.stride())</literal></entry>
	  </row>
	  <row>
	    <entry><literal>idx &lt; i</literal></entry>
	    <entry><literal>index</literal></entry>
	    <entry>This is another syntax for specifying the start
value. This notation does not include 
<literal>idx</literal> in the range of valid indices. It is equivalent to 
<literal>index_range(idx + 1, i.finish(), i.stride())</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>idx &lt;= i</literal></entry>
	    <entry><literal>index</literal></entry>
	    <entry>This is another syntax for specifying the start
value. This notation includes
<literal>idx1</literal> in the range of valid indices. It is equivalent to 
<literal>index_range(idx, i.finish(), i.stride())</literal>.</entry>
	  </row>
	  <row>
	    <entry><literal>i + idx</literal></entry>
	    <entry><literal>index</literal></entry>
	    <entry>This expression shifts the start and finish values
of <literal>i</literal> up by <literal>idx</literal>. It is equivalent to 
<literal>index_range(r.start()+idx1, r.finish()+idx, r.stride())</literal></entry>
	  </row>
	  <row>
	    <entry><literal>i - idx</literal></entry>
	    <entry><literal>index</literal></entry>
	    <entry>This expression shifts the start and finish values
of <literal>i</literal> up by <literal>idx</literal>. It is equivalent to 
<literal>index_range(r.start()-idx1, r.finish()-idx, r.stride())</literal></entry>
	  </row>
	</tbody>
      </tgroup>
    </table>
  </sect3>

      <sect3 id="index_gen">
	<title><literal>index_gen</literal></title>
	<para> <literal>index_gen</literal> aggregates 
<literal>index_range</literal> objects in order to specify view
parameters.  Chained calls to <literal>operator[]</literal> store
range and dimension information used to 
instantiate a new view into a MultiArray.
</para>
	<table>
	  <title>Notation</title>
	  <tgroup cols="2">
	    <tbody>
	      <row>
		<entry><literal>Dims,Ranges</literal></entry>
		<entry>Unsigned integral values.</entry>
	      </row>
	      <row>
		<entry><literal>x</literal></entry>
		<entry>An object of type 
<literal>template gen_type&lt;Dims,Ranges&gt;::type</literal>.</entry>
	      </row>
	      <row>
		<entry><literal>i</literal></entry>
		<entry>An object of type 
<literal>index_range</literal>.</entry>
	      </row>
	      <row>
		<entry><literal>idx</literal></entry>
		<entry>Objects of type <literal>index</literal>.</entry>
	      </row>
	    </tbody>
	  </tgroup>
	</table>
	
    <table><title>Associated Types</title>
      <tgroup cols="2">
	<thead>
	  <row>
	    <entry>Type</entry>
	    <entry>Description</entry>
	  </row>
	</thead>
	<tbody>
	  <row>
	    <entry><literal>index</literal></entry>
	    <entry>This is a signed integral type. It is used to
specify degenerate dimensions.</entry>
	  </row>
	  <row>
	    <entry><literal>size_type</literal></entry>
	    <entry>This is an unsigned integral type. It is used to
report the size of the range an <literal>index_range</literal> 
represents.</entry>
	  </row>
	      <row>
		<entry>
<literal>template gen_type::&lt;Dims,Ranges&gt;::type</literal></entry>
	<entry>This type generator names the result of 
<literal>Dims</literal> chained calls to
<literal>index_gen::operator[]</literal>.  The
<literal>Ranges</literal> parameter is determined by the number of
degenerate ranges specified (i.e. calls to
<literal>operator[](index)</literal>). Note that  
<classname>index_gen</classname> and
<classname>gen_type&lt;0,0&gt;::type</classname> are the same type.</entry>
	      </row>
	</tbody>
      </tgroup>
    </table>
    
      


    <table><title>Valid Expressions</title>
      <tgroup cols="3">
	<thead>
	  <row>
	    <entry>Expression</entry>
	    <entry>Return type</entry>
	    <entry>Semantics</entry>
	  </row>
	</thead>
	<tbody>
	  <row>
	    <entry><literal>index_gen()</literal></entry>
	    <entry><literal>gen_type&lt;0,0&gt;::type</literal></entry>
	    <entry>This constructs an <literal>index_gen</literal>
object. This object can then be used to generate tuples of
<literal>index_range</literal> values.</entry>
	  </row>

	      <row>
		<entry><literal>x[i]</literal></entry>
		<entry><literal>gen_type&lt;Dims+1,Ranges+1&gt;::type</literal>
</entry>
		<entry>Returns a new object containing all previous
<classname>index_range</classname> objects in addition to
<literal>i.</literal> Chained calls to
<function>operator[]</function> are the means by which
<classname>index_range</classname> objects are aggregated.</entry>
	      </row>
	      <row>
		<entry><literal>x[idx]</literal></entry>
		<entry><literal>gen_type&lt;Dims,Ranges+1&gt;::type</literal>
</entry>
	<entry>Returns a new object containing all previous
<classname>index_range</classname> objects in addition to a degenerate
range, <literal>index_range(idx,idx).</literal> Note that this is NOT
equivalent to <literal>x[index_range(idx,idx)].</literal>, which will
return an object of type
<literal>gen_type&lt;Dims+1,Ranges+1&gt;::type</literal>.
</entry>
	      </row>
	    </tbody>
	  </tgroup>
	</table>
      </sect3>
      
    </sect2>

<sect2>
<title>Models</title>

    <itemizedlist>
      <listitem> <literal>multi_array</literal> </listitem>
      <listitem> <literal>multi_array_ref</literal> </listitem>
      <listitem> <literal>const_multi_array_ref</literal> </listitem>
      <listitem> 
	<literal>template array_view&lt;Dims&gt;::type</literal> 
      </listitem>
      <listitem> 
	<literal>template const_array_view&lt;Dims&gt;::type</literal> 
      </listitem>
      <listitem>
	<literal>template subarray&lt;Dims&gt;::type</literal>
      </listitem>
      <listitem>
	<literal>template const_subarray&lt;Dims&gt;::type</literal>
      </listitem>
    </itemizedlist>
</sect2>

</sect1>