1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
|
<sect1 id="MultiArray"><title>MultiArray Concept</title>
<para>The MultiArray
concept defines an interface to hierarchically nested
containers. It specifies operations for accessing elements,
traversing containers, and creating views
of array data.
MultiArray defines
a flexible memory model that accomodates
a variety of data layouts.
</para>
<para>
At each level (or dimension) of a MultiArray's
container hierarchy lie a set of ordered containers, each of which
contains the same number and type of values. The depth of this
container hierarchy is the MultiArray's <emphasis>dimensionality</emphasis>.
MultiArray is recursively defined; the
containers at each level of the container hierarchy model
MultiArray as well. While each dimension of a MultiArray
has its own size, the list of sizes for all dimensions
defines the <emphasis>shape</emphasis> of the entire MultiArray.
At the base of this hierarchy lie 1-dimensional
MultiArrays. Their values are the contained
objects of interest and not part of the container hierarchy. These are
the MultiArray's elements.
</para>
<para>
Like other container concepts, MultiArray exports
iterators to traverse its values. In addition, values can be
addressed directly using the familiar bracket notation.
</para>
<para>
MultiArray also specifies
routines for creating
specialized views. A <emphasis>view</emphasis> lets you treat a
subset of the underlying
elements in a MultiArray as though it were a separate
MultiArray. Since a view refers to the same underlying elements,
changes made to a view's elements will be reflected in the original
MultiArray. For
example, given a 3-dimensional "cube" of elements, a 2-dimensional
slice can be viewed as if it were an independent
MultiArray.
Views are created using <literal>index_gen</literal> and
<literal>index_range</literal> objects.
<literal>index_range</literal>s denote elements from a certain
dimension that are to be included in a
view. <literal>index_gen</literal> aggregates range data and performs
bookkeeping to determine the view type to be returned.
MultiArray's <literal>operator[]</literal>
must be passed the result
of <literal>N</literal> chained calls to
<literal>index_gen::operator[]</literal>, i.e.
<programlisting>indices[a0][a1]...[aN];
</programlisting>
where <literal>N</literal> is the
MultiArray's dimensionality and
<literal>indices</literal> an object of type <literal>index_gen</literal>.
The view type is dependent upon the number of degenerate dimensions
specified to <literal>index_gen</literal>. A degenerate dimension
occurs when a single-index is specified to
<literal>index_gen</literal> for a certain dimension. For example, if
<literal>indices</literal> is an object of type
<literal>index_gen</literal>, then the following example:
<programlisting>indices[index_range(0,5)][2][index_range(0,4)];
</programlisting>
has a degenerate second dimension. The view generated from the above
specification will have 2 dimensions with shape <literal>5 x 4</literal>.
If the "<literal>2</literal>" above were replaced with
another <literal>index_range</literal> object, for example:
<programlisting>indices[index_range(0,5)][index_range(0,2)][index_range(0,4)];
</programlisting>
then the view would have 3 dimensions.</para>
<para>
MultiArray exports
information regarding the memory
layout of its contained elements. Its memory model for elements is
completely defined by 4 properties: the origin, shape, index bases,
and strides. The origin is the address in memory of the element
accessed as <literal>a[0][0]...[0]</literal>, where
<literal>a</literal> is a MultiArray. The shape is a list of numbers
specifying the size of containers at each dimension. For example, the
first extent is the size of the outermost container, the second extent
is the size of its subcontainers, and so on. The index bases are a
list of signed values specifying the index of the first value in a
container. All containers at the same dimension share the same index
base. Note that since positive index bases are
possible, the origin need not exist in order to determine the location
in memory of the MultiArray's elements.
The strides determine how index values are mapped to memory offsets.
They accomodate a
number of possible element layouts. For example, the elements of a 2
dimensional array can be stored by row (i.e., the elements of each row
are stored contiguously) or by column (i.e., the elements of each
column are stored contiguously).
</para>
<para>
Two concept checking classes for the MultiArray concepts
(<literal>ConstMultiArrayConcept</literal> and
<literal>MutableMultiArrayConcept</literal>) are in the namespace
<literal>boost::multi_array_concepts</literal> in
<literal><boost/multi_array/concept_checks.hpp></literal>.
</para>
<sect2><title>Notation</title>
<para>What follows are the descriptions of symbols that will be used
to describe the MultiArray interface.</para>
<table>
<title>Notation</title>
<tgroup cols="2">
<tbody>
<row>
<entry><literal>A</literal></entry>
<entry>A type that is a model of MultiArray
</entry>
</row>
<row>
<entry><literal>a,b</literal></entry>
<entry>Objects of type <literal>A</literal></entry>
</row>
<row>
<entry><literal>NumDims</literal></entry>
<entry>The numeric dimension parameter associated with
<literal>A</literal>.</entry>
</row>
<row>
<entry><literal>Dims</literal></entry>
<entry>Some numeric dimension parameter such that
<literal>0<Dims<NumDims</literal>.
</entry>
</row>
<row>
<entry><literal>indices</literal></entry>
<entry>An object created by some number of chained calls
to <literal>index_gen::operator[](index_range)</literal>.</entry>
</row>
<row>
<entry><literal>index_list</literal></entry>
<entry>An object whose type models
<ulink url="../../utility/Collection.html">Collection</ulink>
</entry>
</row>
<row>
<entry><literal>idx</literal></entry>
<entry>A signed integral value.</entry>
</row>
<row>
<entry><literal>tmp</literal></entry>
<entry>An object of type
<literal>boost::array<index,NumDims></literal></entry>
</row>
</tbody>
</tgroup>
</table>
</sect2>
<sect2><title>Associated Types</title>
<para>
</para>
<table><title>Associated Types</title>
<tgroup cols="2">
<thead>
<row>
<entry>Type</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>value_type</literal></entry>
<entry>This is the value type of the container.
If <literal>NumDims == 1</literal>, then this is
<literal>element</literal>. Otherwise, this is the value type of the
immediately nested containers.
</entry>
</row>
<row>
<entry>
<literal>reference</literal>
</entry>
<entry>
This is the reference type of the contained value.
If <literal>NumDims == 1</literal>, then this is
<literal>element&</literal>. Otherwise, this is the same type as
<literal>template subarray<NumDims-1>::type</literal>.
</entry>
</row>
<row>
<entry>
<literal>const_reference</literal>
</entry>
<entry>
This is the const reference type of the contained value.
If <literal>NumDims == 1</literal>, then this is
<literal>const element&</literal>. Otherwise, this is the same
type as
<literal>template const_subarray<NumDims-1>::type</literal>.
</entry>
</row>
<row>
<entry>
<literal>size_type</literal>
</entry>
<entry>
This is an unsigned integral type. It is primarily used to specify array shape.
</entry>
</row>
<row>
<entry>
<literal>difference_type</literal>
</entry>
<entry>
This is a signed integral type used to represent the distance between two
iterators. It is the same type as
<literal>std::iterator_traits<iterator>::difference_type</literal>.
</entry>
</row>
<row>
<entry><literal>iterator</literal></entry>
<entry>
This is an iterator over the values of <literal>A</literal>.
If <literal>NumDims == 1</literal>, then it models
<ulink url="http://www.boost.org/doc/html/RandomAccessIterator.html">
<literal>Random Access Iterator</literal></ulink>.
Otherwise it models
<ulink url="./iterator_categories.html#concept_RandomAccessTraversalIterator">
Random Access Traversal Iterator</ulink>,
<ulink url="./iterator_categories.html#concept_ReadableIterator">
Readable Iterator</ulink>,
<ulink url="./iterator_categories.html#concept_WritableIterator">
Writable Iterator</ulink>, and
<ulink url="http://www.boost.org/doc/html/OutputIterator.html">
<literal>Output Iterator</literal></ulink>.
</entry>
</row>
<row>
<entry>
<literal>const_iterator</literal>
</entry>
<entry>
This is the const iterator over the values of <literal>A</literal>.
</entry>
</row>
<row>
<entry>
<literal>reverse_iterator</literal>
</entry>
<entry>
This is the reversed iterator, used to iterate backwards over the values of
<literal>A</literal>.
</entry>
</row>
<row>
<entry>
<literal>const_reverse_iterator</literal>
</entry>
<entry>
This is the reversed const iterator.
<literal>A</literal>.
</entry>
</row>
<row>
<entry>
<literal>element</literal>
</entry>
<entry>
This is the type of objects stored at the base of the
hierarchy of MultiArrays. It is the same as
<literal>template subarray<1>::value_type</literal>
</entry>
</row>
<row>
<entry>
<literal>index</literal>
</entry>
<entry>
This is a signed integral type used for indexing into <literal>A</literal>. It
is also used to represent strides and index bases.
</entry>
</row>
<row>
<entry>
<literal>index_gen</literal>
</entry>
<entry>
This type is used to create a tuple of <literal>index_range</literal>s
passed to <literal>operator[]</literal> to create
an <literal>array_view<Dims>::type</literal> object.
</entry>
</row>
<row>
<entry>
<literal>index_range</literal>
</entry>
<entry>
This type specifies a range of indices over some dimension of a
MultiArray. This range will be visible through an
<literal>array_view<Dims>::type</literal> object.
</entry>
</row>
<row>
<entry>
<literal>template subarray<Dims>::type</literal>
</entry>
<entry>
This is subarray type with <literal>Dims</literal> dimensions.
It is the reference type of the <literal>(NumDims - Dims)</literal>
dimension of <literal>A</literal> and also models
MultiArray.
</entry>
</row>
<row>
<entry>
<literal>template const_subarray<Dims>::type</literal>
</entry>
<entry>
This is the const subarray type.
</entry>
</row>
<row>
<entry>
<literal>template array_view<Dims>::type</literal>
</entry>
<entry>
This is the view type with <literal>Dims</literal> dimensions. It is
returned by calling <literal>operator[](<literal>indices</literal>)</literal>.
It models MultiArray.
</entry>
</row>
<row>
<entry>
<literal>template
const_array_view<Dims>::type</literal>
</entry>
<entry>
This is the const view type with <literal>Dims</literal> dimensions.
</entry>
</row>
</tbody>
</tgroup>
</table>
</sect2>
<sect2><title>Valid expressions</title>
<table><title>Valid Expressions</title>
<tgroup cols="3">
<thead>
<row>
<entry>Expression</entry>
<entry>Return type</entry>
<entry>Semantics</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>A::dimensionality</literal></entry>
<entry><literal>size_type</literal></entry>
<entry>This compile-time constant represents the number of
dimensions of the array (note that
<literal>A::dimensionality == NumDims</literal>).</entry>
</row>
<row>
<entry><literal>a.shape()</literal></entry>
<entry><literal>const size_type*</literal></entry>
<entry>
This returns a list of <literal>NumDims</literal> elements specifying the
extent of each array dimension.
</entry>
</row>
<row>
<entry><literal>a.strides()</literal></entry>
<entry><literal>const index*</literal></entry>
<entry>
This returns a list of <literal>NumDims</literal> elements specifying the
stride associated with each array dimension. When accessing values,
strides is used to calculate an element's location in memory.
</entry>
</row>
<row>
<entry><literal>a.index_bases()</literal></entry>
<entry><literal>const index*</literal></entry>
<entry>
This returns a list of <literal>NumDims</literal> elements specifying the
numeric index of the first element for each array dimension.
</entry>
</row>
<row>
<entry><literal>a.origin()</literal></entry>
<entry>
<literal>element*</literal> if <literal>a</literal> is mutable,
<literal>const element*</literal> otherwise.
</entry>
<entry>
This returns the address of the element accessed by the expression
<literal>a[0][0]...[0].</literal>. If the index bases are positive,
this element won't exist, but the address can still be used to locate
a valid element given its indices.
</entry>
</row>
<row>
<entry><literal>a.num_dimensions()</literal></entry>
<entry><literal>size_type</literal></entry>
<entry>This returns the number of dimensions of the array
(note that <literal>a.num_dimensions() == NumDims</literal>).</entry>
</row>
<row>
<entry><literal>a.num_elements()</literal></entry>
<entry><literal>size_type</literal></entry>
<entry>This returns the number of elements contained
in the array. It is equivalent to the following code:
<programlisting>
std::accumulate(a.shape(),a.shape+a.num_dimensions(),
size_type(1),std::multiplies<size_type>());
</programlisting>
</entry>
</row>
<row>
<entry><literal>a.size()</literal></entry>
<entry><literal>size_type</literal></entry>
<entry>
This returns the number of values contained in
<literal>a</literal>. It is equivalent to <literal>a.shape()[0];</literal>
</entry>
</row>
<row>
<entry><literal>a(index_list)</literal></entry>
<entry>
<literal>element&</literal>; if <literal>a</literal> is mutable,
<literal>const element&</literal> otherwise.
</entry>
<entry>
This expression accesses a specific element of
<literal>a</literal>.<literal>index_list</literal> is the unique set
of indices that address the element returned. It is
equivalent to the following code (disregarding intermediate temporaries):
<programlisting>
// multiply indices by strides
std::transform(index_list.begin(), index_list.end(),
a.strides(), tmp.begin(), std::multiplies<index>()),
// add the sum of the products to the origin
*std::accumulate(tmp.begin(), tmp.end(), a.origin());
</programlisting>
</entry>
</row>
<row>
<entry><literal>a.begin()</literal></entry>
<entry>
<literal>iterator</literal> if <literal>a</literal> is mutable,
<literal>const_iterator</literal> otherwise.
</entry>
<entry>This returns an iterator pointing to the beginning of
<literal>a</literal>.</entry>
</row>
<row>
<entry><literal>a.end()</literal></entry>
<entry>
<literal>iterator</literal> if <literal>a</literal> is mutable,
<literal>const_iterator</literal> otherwise.
</entry>
<entry>This returns an iterator pointing to the end of
<literal>a</literal>.</entry>
</row>
<row>
<entry><literal>a.rbegin()</literal></entry>
<entry>
<literal>reverse_iterator</literal> if <literal>a</literal> is mutable,
<literal>const_reverse_iterator</literal> otherwise.
</entry>
<entry>This returns a reverse iterator pointing to the
beginning of <literal>a</literal> reversed.
</entry>
</row>
<row>
<entry><literal>a.rend()</literal></entry>
<entry>
<literal>reverse_iterator</literal> if <literal>a</literal> is mutable,
<literal>const_reverse_iterator</literal> otherwise.
</entry>
<entry>
This returns a reverse iterator pointing to the end of <literal>a</literal>
reversed.
</entry>
</row>
<row>
<entry><literal>a[idx]</literal></entry>
<entry>
<literal>reference</literal> if <literal>a</literal> is mutable,
<literal>const_reference</literal> otherwise.
</entry>
<entry>
This returns a reference type that is bound to the index
<literal>idx</literal> value of <literal>a</literal>. Note that if
<literal>i</literal> is the index base for this dimension, the above
expression returns the <literal>(idx-i)</literal>th element (counting
from zero). The expression is equivalent to
<literal>*(a.begin()+idx-a.index_bases()[0]);</literal>.
</entry>
</row>
<row>
<entry><literal>a[indices]</literal></entry>
<entry>
<literal>array_view<Dims>::type</literal> if
<literal>a</literal> is mutable,
<literal>const_array_view<Dims>::type</literal> otherwise.
</entry>
<entry>
This expression generates a view of the array determined by the
<literal>index_range</literal> and <literal>index</literal> values
used to construct <literal>indices</literal>.
</entry>
</row>
<row>
<entry><literal>a == b</literal></entry>
<entry>bool</entry>
<entry>This performs a lexicographical comparison of the
values of <literal>a</literal> and <literal>b</literal>. The element
type must model <ulink url="https://www.boost.org/sgi/stl/EqualityComparable.html">EqualityComparable</ulink> for this
expression to be valid.</entry>
</row>
<row>
<entry><literal>a < b</literal></entry>
<entry>bool</entry>
<entry>This performs a lexicographical comparison of the
values of <literal>a</literal> and <literal>b</literal>. The element
type must model <ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this
expression to be valid.</entry>
</row>
<row>
<entry><literal>a <= b</literal></entry>
<entry>bool</entry>
<entry>This performs a lexicographical comparison of the
values of <literal>a</literal> and <literal>b</literal>. The element
type must model <ulink url="https://www.boost.org/sgi/stl/EqualityComparable.html">EqualityComparable</ulink> and
<ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this
expression to be valid.</entry>
</row>
<row>
<entry><literal>a > b</literal></entry>
<entry>bool</entry>
<entry>This performs a lexicographical comparison of the
values of <literal>a</literal> and <literal>b</literal>. The element
type must model <ulink url="https://www.boost.org/sgi/stl/EqualityComparable.html">EqualityComparable</ulink> and
<ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this
expression to be valid.</entry>
</row>
<row>
<entry><literal>a >= b</literal></entry>
<entry>bool</entry>
<entry>This performs a lexicographical comparison of the
values of <literal>a</literal> and <literal>b</literal>. The element
type must model <ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink> for this
expression to be valid.</entry>
</row>
</tbody>
</tgroup>
</table>
</sect2>
<sect2><title>Complexity guarantees</title>
<literal>begin()</literal> and <literal>end()</literal> execute in amortized
constant time.
<literal>size()</literal> executes in at most linear time in the
MultiArray's size.
</sect2>
<sect2>
<title>Invariants</title>
<table><title>Invariants</title>
<tgroup cols="2">
<tbody>
<row>
<entry>Valid range</entry>
<entry><literal>[a.begin(),a.end())</literal> is a valid range.
</entry>
</row>
<row>
<entry>Range size</entry>
<entry>
<literal>a.size() == std::distance(a.begin(),a.end());</literal>.
</entry>
</row>
<row>
<entry>Completeness</entry>
<entry>
Iteration through the range
<literal>[a.begin(),a.end())</literal> will traverse across every
<literal>value_type</literal> of <literal>a</literal>.
</entry>
</row>
<row>
<entry>Accessor Equivalence</entry>
<entry>
Calling <literal>a[a1][a2]...[aN]</literal> where <literal>N==NumDims</literal>
yields the same result as calling
<literal>a(index_list)</literal>, where <literal>index_list</literal>
is a <ulink url="../../utility/Collection.html">Collection</ulink> containing the values <literal>a1...aN</literal>.
</entry>
</row>
</tbody>
</tgroup>
</table>
</sect2>
<sect2 id="view_types">
<title>Associated Types for Views</title>
<para>The following MultiArray associated
types define the interface for creating views of existing
MultiArrays. Their interfaces and roles in the
concept are described below.</para>
<sect3 id="index_range">
<title><literal>index_range</literal></title>
<para><literal>index_range</literal> objects represent half-open
strided intervals. They are aggregated (using an
<literal>index_gen</literal> object) and passed to
a MultiArray's <literal>operator[]</literal>
to create an array view. When creating a view,
each <literal>index_range</literal> denotes a range of
valid indices along one dimension of a MultiArray.
Elements that are accessed through the set of ranges specified will be
included in the constructed view. In some cases, an
<literal>index_range</literal> is created without specifying start
or finish values. In those cases, the object is interpreted to
start at the beginning of a MultiArray dimension
and end at its end.</para>
<para>
<literal>index_range</literal> objects can be constructed and modified
several ways in order to allow convenient and clear expression of a
range of indices. To specify ranges, <literal>index_range</literal>
supports a set of constructors, mutating member functions, and a novel
specification involving inequality operators. Using inequality
operators, a half open range [5,10) can be specified as follows:
<programlisting>5 <= index_range() < 10;</programlisting> or
<programlisting>4 < index_range() <= 9;</programlisting> and so on.
The following describes the
<literal>index_range</literal> interface.
</para>
<table>
<title>Notation</title>
<tgroup cols="2">
<tbody>
<row>
<entry><literal>i</literal></entry>
<entry>An object of type <literal>index_range</literal>.</entry>
</row>
<row>
<entry><literal>idx,idx1,idx2,idx3</literal></entry>
<entry>Objects of type <literal>index</literal>.</entry>
</row>
</tbody>
</tgroup>
</table>
<table><title>Associated Types</title>
<tgroup cols="2">
<thead>
<row>
<entry>Type</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>index</literal></entry>
<entry>This is a signed integral type. It is used to
specify the start, finish, and stride values.</entry>
</row>
<row>
<entry><literal>size_type</literal></entry>
<entry>This is an unsigned integral type. It is used to
report the size of the range an <literal>index_range</literal>
represents.</entry>
</row>
</tbody>
</tgroup>
</table>
<table><title>Valid Expressions</title>
<tgroup cols="3">
<thead>
<row>
<entry>Expression</entry>
<entry>Return type</entry>
<entry>Semantics</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>index_range(idx1,idx2,idx3)</literal></entry>
<entry><literal>index_range</literal></entry>
<entry>This constructs an <literal>index_range</literal>
representing the interval <literal>[idx1,idx2)</literal>
with stride <literal>idx3</literal>.</entry>
</row>
<row>
<entry><literal>index_range(idx1,idx2)</literal></entry>
<entry><literal>index_range</literal></entry>
<entry>This constructs an <literal>index_range</literal>
representing the interval <literal>[idx1,idx2)</literal>
with unit stride. It is equivalent to
<literal>index_range(idx1,idx2,1)</literal>.</entry>
</row>
<row>
<entry><literal>index_range()</literal></entry>
<entry><literal>index_range</literal></entry>
<entry>This construct an <literal>index_range</literal>
with unspecified start and finish values.</entry>
</row>
<row>
<entry><literal>i.start(idx1)</literal></entry>
<entry><literal>index&</literal></entry>
<entry>This sets the start index of <literal>i</literal> to
<literal>idx</literal>.</entry>
</row>
<row>
<entry><literal>i.finish(idx)</literal></entry>
<entry><literal>index&</literal></entry>
<entry>This sets the finish index of <literal>i</literal> to
<literal>idx</literal>.</entry>
</row>
<row>
<entry><literal>i.stride(idx)</literal></entry>
<entry><literal>index&</literal></entry>
<entry>This sets the stride length of <literal>i</literal> to
<literal>idx</literal>.</entry>
</row>
<row>
<entry><literal>i.start()</literal></entry>
<entry><literal>index</literal></entry>
<entry>This returns the start index of <literal>i</literal>.</entry>
</row>
<row>
<entry><literal>i.finish()</literal></entry>
<entry><literal>index</literal></entry>
<entry>This returns the finish index of <literal>i</literal>.</entry>
</row>
<row>
<entry><literal>i.stride()</literal></entry>
<entry><literal>index</literal></entry>
<entry>This returns the stride length of <literal>i</literal>.</entry>
</row>
<row>
<entry><literal>i.get_start(idx)</literal></entry>
<entry><literal>index</literal></entry>
<entry>If <literal>i</literal> specifies a start
value, this is equivalent to <literal>i.start()</literal>. Otherwise it
returns <literal>idx</literal>.</entry>
</row>
<row>
<entry><literal>i.get_finish(idx)</literal></entry>
<entry><literal>index</literal></entry>
<entry>If <literal>i</literal> specifies a finish
value, this is equivalent to <literal>i.finish()</literal>. Otherwise it
returns <literal>idx</literal>.</entry>
</row>
<row>
<entry><literal>i.size(idx)</literal></entry>
<entry><literal>size_type</literal></entry>
<entry>If <literal>i</literal> specifies a both finish and
start values, this is equivalent to
<literal>(i.finish()-i.start())/i.stride()</literal>. Otherwise it
returns <literal>idx</literal>.</entry>
</row>
<row>
<entry><literal>i < idx</literal></entry>
<entry><literal>index</literal></entry>
<entry>This is another syntax for specifying the finish
value. This notation does not include
<literal>idx</literal> in the range of valid indices. It is equivalent to
<literal>index_range(r.start(), idx, r.stride())</literal></entry>
</row>
<row>
<entry><literal>i <= idx</literal></entry>
<entry><literal>index</literal></entry>
<entry>This is another syntax for specifying the finish
value. This notation includes
<literal>idx</literal> in the range of valid indices. It is equivalent to
<literal>index_range(r.start(), idx + 1, r.stride())</literal></entry>
</row>
<row>
<entry><literal>idx < i</literal></entry>
<entry><literal>index</literal></entry>
<entry>This is another syntax for specifying the start
value. This notation does not include
<literal>idx</literal> in the range of valid indices. It is equivalent to
<literal>index_range(idx + 1, i.finish(), i.stride())</literal>.</entry>
</row>
<row>
<entry><literal>idx <= i</literal></entry>
<entry><literal>index</literal></entry>
<entry>This is another syntax for specifying the start
value. This notation includes
<literal>idx1</literal> in the range of valid indices. It is equivalent to
<literal>index_range(idx, i.finish(), i.stride())</literal>.</entry>
</row>
<row>
<entry><literal>i + idx</literal></entry>
<entry><literal>index</literal></entry>
<entry>This expression shifts the start and finish values
of <literal>i</literal> up by <literal>idx</literal>. It is equivalent to
<literal>index_range(r.start()+idx1, r.finish()+idx, r.stride())</literal></entry>
</row>
<row>
<entry><literal>i - idx</literal></entry>
<entry><literal>index</literal></entry>
<entry>This expression shifts the start and finish values
of <literal>i</literal> up by <literal>idx</literal>. It is equivalent to
<literal>index_range(r.start()-idx1, r.finish()-idx, r.stride())</literal></entry>
</row>
</tbody>
</tgroup>
</table>
</sect3>
<sect3 id="index_gen">
<title><literal>index_gen</literal></title>
<para> <literal>index_gen</literal> aggregates
<literal>index_range</literal> objects in order to specify view
parameters. Chained calls to <literal>operator[]</literal> store
range and dimension information used to
instantiate a new view into a MultiArray.
</para>
<table>
<title>Notation</title>
<tgroup cols="2">
<tbody>
<row>
<entry><literal>Dims,Ranges</literal></entry>
<entry>Unsigned integral values.</entry>
</row>
<row>
<entry><literal>x</literal></entry>
<entry>An object of type
<literal>template gen_type<Dims,Ranges>::type</literal>.</entry>
</row>
<row>
<entry><literal>i</literal></entry>
<entry>An object of type
<literal>index_range</literal>.</entry>
</row>
<row>
<entry><literal>idx</literal></entry>
<entry>Objects of type <literal>index</literal>.</entry>
</row>
</tbody>
</tgroup>
</table>
<table><title>Associated Types</title>
<tgroup cols="2">
<thead>
<row>
<entry>Type</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>index</literal></entry>
<entry>This is a signed integral type. It is used to
specify degenerate dimensions.</entry>
</row>
<row>
<entry><literal>size_type</literal></entry>
<entry>This is an unsigned integral type. It is used to
report the size of the range an <literal>index_range</literal>
represents.</entry>
</row>
<row>
<entry>
<literal>template gen_type::<Dims,Ranges>::type</literal></entry>
<entry>This type generator names the result of
<literal>Dims</literal> chained calls to
<literal>index_gen::operator[]</literal>. The
<literal>Ranges</literal> parameter is determined by the number of
degenerate ranges specified (i.e. calls to
<literal>operator[](index)</literal>). Note that
<classname>index_gen</classname> and
<classname>gen_type<0,0>::type</classname> are the same type.</entry>
</row>
</tbody>
</tgroup>
</table>
<table><title>Valid Expressions</title>
<tgroup cols="3">
<thead>
<row>
<entry>Expression</entry>
<entry>Return type</entry>
<entry>Semantics</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>index_gen()</literal></entry>
<entry><literal>gen_type<0,0>::type</literal></entry>
<entry>This constructs an <literal>index_gen</literal>
object. This object can then be used to generate tuples of
<literal>index_range</literal> values.</entry>
</row>
<row>
<entry><literal>x[i]</literal></entry>
<entry><literal>gen_type<Dims+1,Ranges+1>::type</literal>
</entry>
<entry>Returns a new object containing all previous
<classname>index_range</classname> objects in addition to
<literal>i.</literal> Chained calls to
<function>operator[]</function> are the means by which
<classname>index_range</classname> objects are aggregated.</entry>
</row>
<row>
<entry><literal>x[idx]</literal></entry>
<entry><literal>gen_type<Dims,Ranges+1>::type</literal>
</entry>
<entry>Returns a new object containing all previous
<classname>index_range</classname> objects in addition to a degenerate
range, <literal>index_range(idx,idx).</literal> Note that this is NOT
equivalent to <literal>x[index_range(idx,idx)].</literal>, which will
return an object of type
<literal>gen_type<Dims+1,Ranges+1>::type</literal>.
</entry>
</row>
</tbody>
</tgroup>
</table>
</sect3>
</sect2>
<sect2>
<title>Models</title>
<itemizedlist>
<listitem> <literal>multi_array</literal> </listitem>
<listitem> <literal>multi_array_ref</literal> </listitem>
<listitem> <literal>const_multi_array_ref</literal> </listitem>
<listitem>
<literal>template array_view<Dims>::type</literal>
</listitem>
<listitem>
<literal>template const_array_view<Dims>::type</literal>
</listitem>
<listitem>
<literal>template subarray<Dims>::type</literal>
</listitem>
<listitem>
<literal>template const_subarray<Dims>::type</literal>
</listitem>
</itemizedlist>
</sect2>
</sect1>
|