1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
<sect2 id="multi_array_class">
<title><literal>multi_array</literal></title>
<para>
<literal>multi_array</literal> is a multi-dimensional container that
supports random access iteration. Its number of dimensions is
fixed at compile time, but its shape and the number of elements it
contains are specified during its construction. The number of elements
will remain fixed for the duration of a
<literal>multi_array</literal>'s lifetime, but the shape of the container can
be changed. A <literal>multi_array</literal> manages its data elements
using a replaceable allocator.
</para>
<formalpara>
<title>Model Of.</title>
<para>
<link linkend="MultiArray">MultiArray</link>,
<ulink url="../../../libs/utility/CopyConstructible.html">CopyConstructible</ulink>. Depending on the element type,
it may also model <ulink url="https://www.boost.org/sgi/stl/EqualityComparable.html">EqualityComparable</ulink> and <ulink url="https://www.boost.org/sgi/stl/LessThanComparable.html">LessThanComparable</ulink>.
</para>
</formalpara>
<formalpara>
<title>Synopsis</title>
<programlisting>
<;
const_reference operator[](index i) const;
array_view<Dims>::type operator[](const indices_tuple& r);
const_array_view<Dims>::type operator[](const indices_tuple& r) const;
// queries
element* data();
const element* data() const;
element* origin();
const element* origin() const;
const size_type* shape() const;
const index* strides() const;
const index* index_bases() const;
const storage_order_type& storage_order() const;
// comparators
bool operator==(const multi_array& rhs);
bool operator!=(const multi_array& rhs);
bool operator<(const multi_array& rhs);
bool operator>(const multi_array& rhs);
bool operator>=(const multi_array& rhs);
bool operator<=(const multi_array& rhs);
// modifiers:
template <typename InputIterator>
void assign(InputIterator begin, InputIterator end);
template <typename SizeList>
void reshape(const SizeList& sizes)
template <typename BaseList> void reindex(const BaseList& values);
void reindex(index value);
template <typename ExtentList>
multi_array& resize(const ExtentList& extents);
multi_array& resize(extents_tuple& extents);
};
]]>
</programlisting>
</formalpara>
<formalpara>
<title>Constructors</title>
<variablelist>
<varlistentry>
<term><programlisting>template <typename ExtentList>
explicit multi_array(const ExtentList& sizes,
const storage_order_type& store = c_storage_order(),
const Allocator& alloc = Allocator());
</programlisting></term>
<listitem>
<para>
This constructs a <literal>multi_array</literal> using the specified
parameters. <literal>sizes</literal> specifies the shape of the
constructed <literal>multi_array</literal>. <literal>store</literal>
specifies the storage order or layout in memory of the array
dimensions. <literal>alloc</literal> is used to
allocate the contained elements.
</para>
<formalpara><title><literal>ExtentList</literal> Requirements</title>
<para>
<literal>ExtentList</literal> must model <ulink url="../../utility/Collection.html">Collection</ulink>.
</para>
</formalpara>
<formalpara><title>Preconditions</title>
<para><literal>sizes.size() == NumDims;</literal></para>
</formalpara>
</listitem>
</varlistentry>
<varlistentry>
<term>
<programlisting><![CDATA[explicit multi_array(extent_gen::gen_type<NumDims>::type ranges,
const storage_order_type& store = c_storage_order(),
const Allocator& alloc = Allocator());]]>
</programlisting></term>
<listitem>
<para>
This constructs a <literal>multi_array</literal> using the specified
parameters. <literal>ranges</literal> specifies the shape and
index bases of the constructed multi_array. It is the result of
<literal>NumDims</literal> chained calls to
<literal>extent_gen::operator[]</literal>. <literal>store</literal>
specifies the storage order or layout in memory of the array
dimensions. <literal>alloc</literal> is the allocator used to
allocate the memory used to store <literal>multi_array</literal>
elements.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><programlisting>
<![CDATA[multi_array(const multi_array& x);
multi_array(const const_multi_array_ref<ValueType,NumDims>& x,
const Allocator& alloc = Allocator());
multi_array(const const_subarray<NumDims>::type& x,
const Allocator& alloc = Allocator());
multi_array(const const_array_view<NumDims>::type& x,
const Allocator& alloc = Allocator());
multi_array(const multi_array_ref<ValueType,NumDims>& x,
const Allocator& alloc = Allocator());
multi_array(const subarray<NumDims>::type& x,
const Allocator& alloc = Allocator());
multi_array(const array_view<NumDims>::type& x,
const Allocator& alloc = Allocator());]]>
</programlisting></term>
<listitem>
<para>These constructors all constructs a <literal>multi_array</literal> and
perform a deep copy of <literal>x</literal>.
</para>
<formalpara>
<title>Complexity</title>
<para> This performs O(<literal>x.num_elements()</literal>) calls to
<literal>element</literal>'s copy
constructor.
</para></formalpara>
</listitem>
</varlistentry>
<varlistentry>
<term><programlisting>
<![CDATA[multi_array();]]>
</programlisting></term>
<listitem>
<para>This constructs a <literal>multi_array</literal> whose shape is (0,...,0) and contains no elements.
</para>
</listitem>
</varlistentry>
</variablelist>
<formalpara><title>Note on Constructors</title>
<para>
The <literal>multi_array</literal> construction expressions,
<programlisting>
multi_array<int,3> A(boost::extents[5][4][3]);
</programlisting>
and
<programlisting>
boost::array<multi_array_base::index,3> my_extents = {{5, 4, 3}};
multi_array<int,3> A(my_extents);
</programlisting>
are equivalent.
</para>
</formalpara>
</formalpara>
<formalpara>
<title>Modifiers</title>
<variablelist>
<varlistentry>
<term><programlisting>
<![CDATA[multi_array& operator=(const multi_array& x);
template <class Array> multi_array& operator=(const Array& x);]]>
</programlisting>
</term>
<listitem>
<para>This performs an element-wise copy of <literal>x</literal>
into the current <literal>multi_array</literal>.</para>
<formalpara>
<title><literal>Array</literal> Requirements</title>
<para><literal>Array</literal> must model MultiArray.
</para></formalpara>
<formalpara>
<title>Preconditions</title>
<para>
<programlisting>std::equal(this->shape(),this->shape()+this->num_dimensions(),
x.shape());</programlisting></para>
</formalpara>
<formalpara>
<title>Postconditions</title>
<para>
<programlisting>(*.this) == x;</programlisting>
</para>
</formalpara>
<formalpara>
<title>Complexity</title>
<para>The assignment operators perform
O(<literal>x.num_elements()</literal>) calls to <literal>element</literal>'s
copy constructor.</para></formalpara>
</listitem>
</varlistentry>
<varlistentry>
<term>
<programlisting>
<![CDATA[
template <typename InputIterator>
void assign(InputIterator begin, InputIterator end);]]>
</programlisting>
</term>
<listitem>
<para>This copies the elements in the range
<literal>[begin,end)</literal> into the array. It is equivalent to
<literal>std::copy(begin,end,this->data())</literal>.
</para>
<formalpara><title>Preconditions</title>
<para><literal>std::distance(begin,end) == this->num_elements();</literal>
</para>
</formalpara>
<formalpara>
<title>Complexity</title>
<para>
The <literal>assign</literal> member function performs
O(<literal>this->num_elements()</literal>) calls to
<literal>ValueType</literal>'s copy constructor.
</para>
</formalpara>
</listitem>
</varlistentry>
<varlistentry>
<term>
<programlisting><![CDATA[multi_array& resize(extent_gen::gen_type<NumDims>::type extents);
template <typename ExtentList>
multi_array& resize(const ExtentList& extents);
]]>
</programlisting></term>
<listitem>
<para>
This function resizes an array to the shape specified by
<literal>extents</literal>, which is either a generated list of
extents or a model of the <literal>Collection</literal> concept. The
contents of the array are preserved whenever possible; if the new
array size is smaller, then some data will be lost. Any new elements
created by resizing the array are initialized with the
<literal>element</literal> default constructor.
</para>
</listitem>
</varlistentry>
</variablelist>
</formalpara>
<formalpara>
<title>Queries</title>
<variablelist>
<varlistentry>
<term><programlisting>
<![CDATA[storage_order_type& storage_order() const;]]>
</programlisting>
</term>
<listitem>
<para>This query returns the storage order object associated with the
<literal>multi_array</literal> in question. It can be used to construct a new array with the same storage order.</para>
</listitem>
</varlistentry>
</variablelist>
</formalpara>
</sect2>
|