File: constructors.cpp

package info (click to toggle)
boost1.83 1.83.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 545,632 kB
  • sloc: cpp: 3,857,086; xml: 125,552; ansic: 34,414; python: 25,887; asm: 5,276; sh: 4,799; ada: 1,681; makefile: 1,629; perl: 1,212; pascal: 1,139; sql: 810; yacc: 478; ruby: 102; lisp: 24; csh: 6
file content (218 lines) | stat: -rw-r--r-- 6,416 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// Copyright 2002 The Trustees of Indiana University.

// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Boost.MultiArray Library
//  Authors: Ronald Garcia
//           Jeremy Siek
//           Andrew Lumsdaine
//  See http://www.boost.org/libs/multi_array for documentation.

//
// constructors.cpp - Testing out the various constructor options
//


#include <boost/core/lightweight_test.hpp>

#include <boost/multi_array.hpp>
#include <algorithm>
#include <list>

void check_shape(const double&, std::size_t*, int*, unsigned int)
{}

template <class Array>
void check_shape(const Array& A,
                 std::size_t* sizes,
                 int* strides,
                 unsigned int num_elements)
{
  BOOST_TEST(A.num_elements() == num_elements);
  BOOST_TEST(A.size() == *sizes);
  BOOST_TEST(std::equal(sizes, sizes + A.num_dimensions(), A.shape()));
  BOOST_TEST(std::equal(strides, strides + A.num_dimensions(), A.strides()));
  check_shape(A[0], ++sizes, ++strides, num_elements / A.size());
}


bool equal(const double& a, const double& b)
{
  return a == b;
}

template <typename ArrayA, typename ArrayB>
bool equal(const ArrayA& A, const ArrayB& B)
{
  typename ArrayA::const_iterator ia;
  typename ArrayB::const_iterator ib = B.begin();
  for (ia = A.begin(); ia != A.end(); ++ia, ++ib)
    if (!::equal(*ia, *ib))
      return false;
  return true;
}


int
main()
{
  typedef boost::multi_array<double, 3>::size_type size_type;
  boost::array<size_type,3> sizes = { { 3, 3, 3 } };
  int strides[] = { 9, 3, 1 };
  size_type num_elements = 27;

  // Default multi_array constructor
  {
    boost::multi_array<double, 3> A;
  }

  // Constructor 1, default storage order and allocator
  {
    boost::multi_array<double, 3> A(sizes);
    check_shape(A, &sizes[0], strides, num_elements);

    double* ptr = 0;
    boost::multi_array_ref<double,3> B(ptr,sizes);
    check_shape(B, &sizes[0], strides, num_elements);

    const double* cptr = ptr;
    boost::const_multi_array_ref<double,3> C(cptr,sizes);
    check_shape(C, &sizes[0], strides, num_elements);
  }

  // Constructor 1, fortran storage order and user-supplied allocator
  {
    typedef boost::multi_array<double, 3,
      std::allocator<double> >::size_type size_type;
    size_type num_elements = 27;
    int col_strides[] = { 1, 3, 9 };

    boost::multi_array<double, 3,
      std::allocator<double> > A(sizes,boost::fortran_storage_order());
    check_shape(A, &sizes[0], col_strides, num_elements);

    double *ptr=0;
    boost::multi_array_ref<double, 3>
      B(ptr,sizes,boost::fortran_storage_order());
    check_shape(B, &sizes[0], col_strides, num_elements);

    const double *cptr=ptr;
    boost::const_multi_array_ref<double, 3>
      C(cptr,sizes,boost::fortran_storage_order());
    check_shape(C, &sizes[0], col_strides, num_elements);
  }

  // Constructor 2, default storage order and allocator
  {
    typedef boost::multi_array<double, 3>::size_type size_type;
    size_type num_elements = 27;

    boost::multi_array<double, 3>::extent_gen extents;
    boost::multi_array<double, 3> A(extents[3][3][3]);
    check_shape(A, &sizes[0], strides, num_elements);

    double *ptr=0;
    boost::multi_array_ref<double, 3> B(ptr,extents[3][3][3]);
    check_shape(B, &sizes[0], strides, num_elements);

    const double *cptr=ptr;
    boost::const_multi_array_ref<double, 3> C(cptr,extents[3][3][3]);
    check_shape(C, &sizes[0], strides, num_elements);
  }

  // Copy Constructors
  {
    typedef boost::multi_array<double, 3>::size_type size_type;
    size_type num_elements = 27;
    std::vector<double> vals(27, 4.5);

    boost::multi_array<double, 3> A(sizes);
    A.assign(vals.begin(),vals.end());
    boost::multi_array<double, 3> B(A);
    check_shape(B, &sizes[0], strides, num_elements);
    BOOST_TEST(::equal(A, B));

    double ptr[27];
    boost::multi_array_ref<double, 3> C(ptr,sizes);
    A.assign(vals.begin(),vals.end());
    boost::multi_array_ref<double, 3> D(C);
    check_shape(D, &sizes[0], strides, num_elements);
    BOOST_TEST(C.data() == D.data());

    const double* cptr = ptr;
    boost::const_multi_array_ref<double, 3> E(cptr,sizes);
    boost::const_multi_array_ref<double, 3> F(E);
    check_shape(F, &sizes[0], strides, num_elements);
    BOOST_TEST(E.data() == F.data());
  }


  // Conversion construction
  {
    typedef boost::multi_array<double, 3>::size_type size_type;
    size_type num_elements = 27;
    std::vector<double> vals(27, 4.5);

    boost::multi_array<double, 3> A(sizes);
    A.assign(vals.begin(),vals.end());
    boost::multi_array_ref<double, 3> B(A);
    boost::const_multi_array_ref<double, 3> C(A);
    check_shape(B, &sizes[0], strides, num_elements);
    check_shape(C, &sizes[0], strides, num_elements);
    BOOST_TEST(B.data() == A.data());
    BOOST_TEST(C.data() == A.data());

    double ptr[27];
    boost::multi_array_ref<double, 3> D(ptr,sizes);
    D.assign(vals.begin(),vals.end());
    boost::const_multi_array_ref<double, 3> E(D);
    check_shape(E, &sizes[0], strides, num_elements);
    BOOST_TEST(E.data() == D.data());
  }

  // Assignment Operator
  {
    typedef boost::multi_array<double, 3>::size_type size_type;
    size_type num_elements = 27;
    std::vector<double> vals(27, 4.5);

    boost::multi_array<double, 3> A(sizes), B(sizes);
    A.assign(vals.begin(),vals.end());
    B = A;
    check_shape(B, &sizes[0], strides, num_elements);
    BOOST_TEST(::equal(A, B));

    double ptr1[27];
    double ptr2[27];
    boost::multi_array_ref<double, 3> C(ptr1,sizes), D(ptr2,sizes);
    C.assign(vals.begin(),vals.end());
    D = C;
    check_shape(D, &sizes[0], strides, num_elements);
    BOOST_TEST(::equal(C,D));
  }


  // subarray value_type is multi_array
  {
    typedef boost::multi_array<double,3> array;
    typedef array::size_type size_type;
    size_type num_elements = 27;
    std::vector<double> vals(num_elements, 4.5);

    boost::multi_array<double, 3> A(sizes);
    A.assign(vals.begin(),vals.end());

    typedef array::subarray<2>::type subarray;
    subarray B = A[1];
    subarray::value_type C = B[0];

    // should comparisons between the types work?
    BOOST_TEST(::equal(A[1][0],C));
    BOOST_TEST(::equal(B[0],C));
  }
  return boost::report_errors();
}