1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
// Copyright 2002 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Boost.MultiArray Library
// Authors: Ronald Garcia
// Jeremy Siek
// Andrew Lumsdaine
// See http://www.boost.org/libs/multi_array for documentation.
//
// constructors.cpp - Testing out the various constructor options
//
#include <boost/core/lightweight_test.hpp>
#include <boost/multi_array.hpp>
#include <algorithm>
#include <list>
void check_shape(const double&, std::size_t*, int*, unsigned int)
{}
template <class Array>
void check_shape(const Array& A,
std::size_t* sizes,
int* strides,
unsigned int num_elements)
{
BOOST_TEST(A.num_elements() == num_elements);
BOOST_TEST(A.size() == *sizes);
BOOST_TEST(std::equal(sizes, sizes + A.num_dimensions(), A.shape()));
BOOST_TEST(std::equal(strides, strides + A.num_dimensions(), A.strides()));
check_shape(A[0], ++sizes, ++strides, num_elements / A.size());
}
bool equal(const double& a, const double& b)
{
return a == b;
}
template <typename ArrayA, typename ArrayB>
bool equal(const ArrayA& A, const ArrayB& B)
{
typename ArrayA::const_iterator ia;
typename ArrayB::const_iterator ib = B.begin();
for (ia = A.begin(); ia != A.end(); ++ia, ++ib)
if (!::equal(*ia, *ib))
return false;
return true;
}
int
main()
{
typedef boost::multi_array<double, 3>::size_type size_type;
boost::array<size_type,3> sizes = { { 3, 3, 3 } };
int strides[] = { 9, 3, 1 };
size_type num_elements = 27;
// Default multi_array constructor
{
boost::multi_array<double, 3> A;
}
// Constructor 1, default storage order and allocator
{
boost::multi_array<double, 3> A(sizes);
check_shape(A, &sizes[0], strides, num_elements);
double* ptr = 0;
boost::multi_array_ref<double,3> B(ptr,sizes);
check_shape(B, &sizes[0], strides, num_elements);
const double* cptr = ptr;
boost::const_multi_array_ref<double,3> C(cptr,sizes);
check_shape(C, &sizes[0], strides, num_elements);
}
// Constructor 1, fortran storage order and user-supplied allocator
{
typedef boost::multi_array<double, 3,
std::allocator<double> >::size_type size_type;
size_type num_elements = 27;
int col_strides[] = { 1, 3, 9 };
boost::multi_array<double, 3,
std::allocator<double> > A(sizes,boost::fortran_storage_order());
check_shape(A, &sizes[0], col_strides, num_elements);
double *ptr=0;
boost::multi_array_ref<double, 3>
B(ptr,sizes,boost::fortran_storage_order());
check_shape(B, &sizes[0], col_strides, num_elements);
const double *cptr=ptr;
boost::const_multi_array_ref<double, 3>
C(cptr,sizes,boost::fortran_storage_order());
check_shape(C, &sizes[0], col_strides, num_elements);
}
// Constructor 2, default storage order and allocator
{
typedef boost::multi_array<double, 3>::size_type size_type;
size_type num_elements = 27;
boost::multi_array<double, 3>::extent_gen extents;
boost::multi_array<double, 3> A(extents[3][3][3]);
check_shape(A, &sizes[0], strides, num_elements);
double *ptr=0;
boost::multi_array_ref<double, 3> B(ptr,extents[3][3][3]);
check_shape(B, &sizes[0], strides, num_elements);
const double *cptr=ptr;
boost::const_multi_array_ref<double, 3> C(cptr,extents[3][3][3]);
check_shape(C, &sizes[0], strides, num_elements);
}
// Copy Constructors
{
typedef boost::multi_array<double, 3>::size_type size_type;
size_type num_elements = 27;
std::vector<double> vals(27, 4.5);
boost::multi_array<double, 3> A(sizes);
A.assign(vals.begin(),vals.end());
boost::multi_array<double, 3> B(A);
check_shape(B, &sizes[0], strides, num_elements);
BOOST_TEST(::equal(A, B));
double ptr[27];
boost::multi_array_ref<double, 3> C(ptr,sizes);
A.assign(vals.begin(),vals.end());
boost::multi_array_ref<double, 3> D(C);
check_shape(D, &sizes[0], strides, num_elements);
BOOST_TEST(C.data() == D.data());
const double* cptr = ptr;
boost::const_multi_array_ref<double, 3> E(cptr,sizes);
boost::const_multi_array_ref<double, 3> F(E);
check_shape(F, &sizes[0], strides, num_elements);
BOOST_TEST(E.data() == F.data());
}
// Conversion construction
{
typedef boost::multi_array<double, 3>::size_type size_type;
size_type num_elements = 27;
std::vector<double> vals(27, 4.5);
boost::multi_array<double, 3> A(sizes);
A.assign(vals.begin(),vals.end());
boost::multi_array_ref<double, 3> B(A);
boost::const_multi_array_ref<double, 3> C(A);
check_shape(B, &sizes[0], strides, num_elements);
check_shape(C, &sizes[0], strides, num_elements);
BOOST_TEST(B.data() == A.data());
BOOST_TEST(C.data() == A.data());
double ptr[27];
boost::multi_array_ref<double, 3> D(ptr,sizes);
D.assign(vals.begin(),vals.end());
boost::const_multi_array_ref<double, 3> E(D);
check_shape(E, &sizes[0], strides, num_elements);
BOOST_TEST(E.data() == D.data());
}
// Assignment Operator
{
typedef boost::multi_array<double, 3>::size_type size_type;
size_type num_elements = 27;
std::vector<double> vals(27, 4.5);
boost::multi_array<double, 3> A(sizes), B(sizes);
A.assign(vals.begin(),vals.end());
B = A;
check_shape(B, &sizes[0], strides, num_elements);
BOOST_TEST(::equal(A, B));
double ptr1[27];
double ptr2[27];
boost::multi_array_ref<double, 3> C(ptr1,sizes), D(ptr2,sizes);
C.assign(vals.begin(),vals.end());
D = C;
check_shape(D, &sizes[0], strides, num_elements);
BOOST_TEST(::equal(C,D));
}
// subarray value_type is multi_array
{
typedef boost::multi_array<double,3> array;
typedef array::size_type size_type;
size_type num_elements = 27;
std::vector<double> vals(num_elements, 4.5);
boost::multi_array<double, 3> A(sizes);
A.assign(vals.begin(),vals.end());
typedef array::subarray<2>::type subarray;
subarray B = A[1];
subarray::value_type C = B[0];
// should comparisons between the types work?
BOOST_TEST(::equal(A[1][0],C));
BOOST_TEST(::equal(B[0],C));
}
return boost::report_errors();
}
|