1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
/*
* resizing_lattice.cpp
*
* Demonstrates the usage of resizing of the state type during integration.
* Examplary system is a strongly nonlinear, disordered Hamiltonian lattice
* where the spreading of energy is investigated
*
* Copyright 2011-2012 Mario Mulansky
* Copyright 2012-2013 Karsten Ahnert
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
*/
#include <iostream>
#include <utility>
#include <boost/numeric/odeint.hpp>
#include <boost/ref.hpp>
#include <boost/random.hpp>
using namespace std;
using namespace boost::numeric::odeint;
//[ resizing_lattice_system_class
typedef vector< double > coord_type;
typedef pair< coord_type , coord_type > state_type;
struct compacton_lattice
{
const int m_max_N;
const double m_beta;
int m_pot_start_index;
vector< double > m_pot;
compacton_lattice( int max_N , double beta , int pot_start_index )
: m_max_N( max_N ) , m_beta( beta ) , m_pot_start_index( pot_start_index ) , m_pot( max_N )
{
srand( time( NULL ) );
// fill random potential with iid values from [0,1]
boost::mt19937 rng;
boost::uniform_real<> unif( 0.0 , 1.0 );
boost::variate_generator< boost::mt19937&, boost::uniform_real<> > gen( rng , unif );
generate( m_pot.begin() , m_pot.end() , gen );
}
void operator()( const coord_type &q , coord_type &dpdt )
{
// calculate dpdt = -dH/dq of this hamiltonian system
// dp_i/dt = - V_i * q_i^3 - beta*(q_i - q_{i-1})^3 + beta*(q_{i+1} - q_i)^3
const int N = q.size();
double diff = q[0] - q[N-1];
for( int i=0 ; i<N ; ++i )
{
dpdt[i] = - m_pot[m_pot_start_index+i] * q[i]*q[i]*q[i] -
m_beta * diff*diff*diff;
diff = q[(i+1) % N] - q[i];
dpdt[i] += m_beta * diff*diff*diff;
}
}
void energy_distribution( const coord_type &q , const coord_type &p , coord_type &energies )
{
// computes the energy per lattice site normalized by total energy
const size_t N = q.size();
double en = 0.0;
for( size_t i=0 ; i<N ; i++ )
{
const double diff = q[(i+1) % N] - q[i];
energies[i] = p[i]*p[i]/2.0
+ m_pot[m_pot_start_index+i]*q[i]*q[i]*q[i]*q[i]/4.0
+ m_beta/4.0 * diff*diff*diff*diff;
en += energies[i];
}
en = 1.0/en;
for( size_t i=0 ; i<N ; i++ )
{
energies[i] *= en;
}
}
double energy( const coord_type &q , const coord_type &p )
{
// calculates the total energy of the excitation
const size_t N = q.size();
double en = 0.0;
for( size_t i=0 ; i<N ; i++ )
{
const double diff = q[(i+1) % N] - q[i];
en += p[i]*p[i]/2.0
+ m_pot[m_pot_start_index+i]*q[i]*q[i]*q[i]*q[i] / 4.0
+ m_beta/4.0 * diff*diff*diff*diff;
}
return en;
}
void change_pot_start( const int delta )
{
m_pot_start_index += delta;
}
};
//]
//[ resizing_lattice_resize_function
void do_resize( coord_type &q , coord_type &p , coord_type &distr , const int N )
{
q.resize( N );
p.resize( N );
distr.resize( N );
}
//]
const int max_N = 1024;
const double beta = 1.0;
int main()
{
//[ resizing_lattice_initialize
//start with 60 sites
const int N_start = 60;
coord_type q( N_start , 0.0 );
q.reserve( max_N );
coord_type p( N_start , 0.0 );
p.reserve( max_N );
// start with uniform momentum distribution over 20 sites
fill( p.begin()+20 , p.end()-20 , 1.0/sqrt(20.0) );
coord_type distr( N_start , 0.0 );
distr.reserve( max_N );
// create the system
compacton_lattice lattice( max_N , beta , (max_N-N_start)/2 );
//create the stepper, note that we use an always_resizer because state size might change during steps
typedef symplectic_rkn_sb3a_mclachlan< coord_type , coord_type , double , coord_type , coord_type , double ,
range_algebra , default_operations , always_resizer > hamiltonian_stepper;
hamiltonian_stepper stepper;
hamiltonian_stepper::state_type state = make_pair( q , p );
//]
//[ resizing_lattice_steps_loop
double t = 0.0;
const double dt = 0.1;
const int steps = 10000;
for( int step = 0 ; step < steps ; ++step )
{
stepper.do_step( boost::ref(lattice) , state , t , dt );
lattice.energy_distribution( state.first , state.second , distr );
if( distr[10] > 1E-150 )
{
do_resize( state.first , state.second , distr , state.first.size()+20 );
rotate( state.first.begin() , state.first.end()-20 , state.first.end() );
rotate( state.second.begin() , state.second.end()-20 , state.second.end() );
lattice.change_pot_start( -20 );
cout << t << ": resized left to " << distr.size() << ", energy = " << lattice.energy( state.first , state.second ) << endl;
}
if( distr[distr.size()-10] > 1E-150 )
{
do_resize( state.first , state.second , distr , state.first.size()+20 );
cout << t << ": resized right to " << distr.size() << ", energy = " << lattice.energy( state.first , state.second ) << endl;
}
t += dt;
}
//]
cout << "final lattice size: " << distr.size() << ", final energy: " << lattice.energy( state.first , state.second ) << endl;
}
|