1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
// Boost.Polygon library voronoi_basic_tutorial.cpp file
// Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for updates, documentation, and revision history.
#include <cstdio>
#include <vector>
#include <boost/polygon/voronoi.hpp>
using boost::polygon::voronoi_builder;
using boost::polygon::voronoi_diagram;
using boost::polygon::x;
using boost::polygon::y;
using boost::polygon::low;
using boost::polygon::high;
#include "voronoi_visual_utils.hpp"
struct Point {
int a;
int b;
Point(int x, int y) : a(x), b(y) {}
};
struct Segment {
Point p0;
Point p1;
Segment(int x1, int y1, int x2, int y2) : p0(x1, y1), p1(x2, y2) {}
};
namespace boost {
namespace polygon {
template <>
struct geometry_concept<Point> {
typedef point_concept type;
};
template <>
struct point_traits<Point> {
typedef int coordinate_type;
static inline coordinate_type get(
const Point& point, orientation_2d orient) {
return (orient == HORIZONTAL) ? point.a : point.b;
}
};
template <>
struct geometry_concept<Segment> {
typedef segment_concept type;
};
template <>
struct segment_traits<Segment> {
typedef int coordinate_type;
typedef Point point_type;
static inline point_type get(const Segment& segment, direction_1d dir) {
return dir.to_int() ? segment.p1 : segment.p0;
}
};
} // polygon
} // boost
// Traversing Voronoi edges using edge iterator.
int iterate_primary_edges1(const voronoi_diagram<double>& vd) {
int result = 0;
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin();
it != vd.edges().end(); ++it) {
if (it->is_primary())
++result;
}
return result;
}
// Traversing Voronoi edges using cell iterator.
int iterate_primary_edges2(const voronoi_diagram<double> &vd) {
int result = 0;
for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin();
it != vd.cells().end(); ++it) {
const voronoi_diagram<double>::cell_type& cell = *it;
const voronoi_diagram<double>::edge_type* edge = cell.incident_edge();
// This is convenient way to iterate edges around Voronoi cell.
do {
if (edge->is_primary())
++result;
edge = edge->next();
} while (edge != cell.incident_edge());
}
return result;
}
// Traversing Voronoi edges using vertex iterator.
// As opposite to the above two functions this one will not iterate through
// edges without finite endpoints and will iterate only once through edges
// with single finite endpoint.
int iterate_primary_edges3(const voronoi_diagram<double> &vd) {
int result = 0;
for (voronoi_diagram<double>::const_vertex_iterator it =
vd.vertices().begin(); it != vd.vertices().end(); ++it) {
const voronoi_diagram<double>::vertex_type& vertex = *it;
const voronoi_diagram<double>::edge_type* edge = vertex.incident_edge();
// This is convenient way to iterate edges around Voronoi vertex.
do {
if (edge->is_primary())
++result;
edge = edge->rot_next();
} while (edge != vertex.incident_edge());
}
return result;
}
int main() {
// Preparing Input Geometries.
std::vector<Point> points;
points.push_back(Point(0, 0));
points.push_back(Point(1, 6));
std::vector<Segment> segments;
segments.push_back(Segment(-4, 5, 5, -1));
segments.push_back(Segment(3, -11, 13, -1));
// Construction of the Voronoi Diagram.
voronoi_diagram<double> vd;
construct_voronoi(points.begin(), points.end(),
segments.begin(), segments.end(),
&vd);
// Traversing Voronoi Graph.
{
printf("Traversing Voronoi graph.\n");
printf("Number of visited primary edges using edge iterator: %d\n",
iterate_primary_edges1(vd));
printf("Number of visited primary edges using cell iterator: %d\n",
iterate_primary_edges2(vd));
printf("Number of visited primary edges using vertex iterator: %d\n",
iterate_primary_edges3(vd));
printf("\n");
}
// Using color member of the Voronoi primitives to store the average number
// of edges around each cell (including secondary edges).
{
printf("Number of edges (including secondary) around the Voronoi cells:\n");
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin();
it != vd.edges().end(); ++it) {
std::size_t cnt = it->cell()->color();
it->cell()->color(cnt + 1);
}
for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin();
it != vd.cells().end(); ++it) {
printf("%lu ", it->color());
}
printf("\n");
printf("\n");
}
// Linking Voronoi cells with input geometries.
{
unsigned int cell_index = 0;
for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin();
it != vd.cells().end(); ++it) {
if (it->contains_point()) {
if (it->source_category() ==
boost::polygon::SOURCE_CATEGORY_SINGLE_POINT) {
std::size_t index = it->source_index();
Point p = points[index];
printf("Cell #%u contains a point: (%d, %d).\n",
cell_index, x(p), y(p));
} else if (it->source_category() ==
boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) {
std::size_t index = it->source_index() - points.size();
Point p0 = low(segments[index]);
printf("Cell #%u contains segment start point: (%d, %d).\n",
cell_index, x(p0), y(p0));
} else if (it->source_category() ==
boost::polygon::SOURCE_CATEGORY_SEGMENT_END_POINT) {
std::size_t index = it->source_index() - points.size();
Point p1 = high(segments[index]);
printf("Cell #%u contains segment end point: (%d, %d).\n",
cell_index, x(p1), y(p1));
}
} else {
std::size_t index = it->source_index() - points.size();
Point p0 = low(segments[index]);
Point p1 = high(segments[index]);
printf("Cell #%u contains a segment: ((%d, %d), (%d, %d)). \n",
cell_index, x(p0), y(p0), x(p1), y(p1));
}
++cell_index;
}
}
return 0;
}
|