File: operators.qbk

package info (click to toggle)
boost1.83 1.83.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 545,632 kB
  • sloc: cpp: 3,857,086; xml: 125,552; ansic: 34,414; python: 25,887; asm: 5,276; sh: 4,799; ada: 1,681; makefile: 1,629; perl: 1,212; pascal: 1,139; sql: 810; yacc: 478; ruby: 102; lisp: 24; csh: 6
file content (257 lines) | stat: -rw-r--r-- 11,570 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
[section boost/python/operators.hpp]
[section Introduction]
<boost/python/operators.hpp> provides types and functions for automatically generating Python [@http://www.python.org/doc/ref/specialnames.html special methods] from the corresponding C++ constructs. Most of these constructs are operator expressions, hence the name. To use the facility, substitute the [link high_level_components.boost_python_operators_hpp.object_self self] object for an object of the class type being wrapped in the expression to be exposed, and pass the result to [link high_level_components.boost_python_class_hpp.class_template_class_t_bases_hel.class_template_class_modifier_fu class_<>::def()]. Much of what is exposed in this header should be considered part of the implementation, so is not documented in detail here.
[endsect]
[section Class `self_ns::self_t`]
`self_ns::self_t` is the actual type of the [link high_level_components.boost_python_operators_hpp.object_self self] object. The library isolates `self_t` in its own namespace, `self_ns`, in order to prevent the generalized operator templates which operate on it from being found by argument-dependent lookup in other contexts. This should be considered an implementation detail, since users should never have to mention `self_t` directly.
``
namespace boost { namespace python { namespace self_ns {
{
   unspecified-type-declaration self_t;

   // inplace operators
   template <class T> operator_<unspecified> operator+=(self_t, T);
   template <class T> operator_<unspecified> operator-=(self_t, T);
   template <class T> operator_<unspecified> operator*=(self_t, T);
   template <class T> operator_<unspecified> operator/=(self_t, T);
   template <class T> operator_<unspecified> operator%=(self_t, T);
   template <class T> operator_<unspecified> operator>>=(self_t, T);
   template <class T> operator_<unspecified> operator<<=(self_t, T);
   template <class T> operator_<unspecified> operator&=(self_t, T);
   template <class T> operator_<unspecified> operator^=(self_t, T);
   template <class T> operator_<unspecified> operator|=(self_t, T);

   // comparisons
   template <class L, class R> operator_<unspecified> operator==(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator!=(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator<(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator>(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator<=(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator>=(L const&, R const&);

   // non-member operations
   template <class L, class R> operator_<unspecified> operator+(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator-(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator*(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator/(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator%(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator>>(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator<<(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator&(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator^(L const&, R const&);
   template <class L, class R> operator_<unspecified> operator|(L const&, R const&);
   template <class L, class R> operator_<unspecified> pow(L const&, R const&);

   // unary operations
   operator_<unspecified> operator-(self_t);
   operator_<unspecified> operator+(self_t);
   operator_<unspecified> operator~(self_t);
   operator_<unspecified> operator!(self_t);

   // value operations
   operator_<unspecified> int_(self_t);
   operator_<unspecified> long_(self_t);
   operator_<unspecified> float_(self_t);
   operator_<unspecified> complex_(self_t);
   operator_<unspecified> str(self_t);

   operator_<unspecified> repr(self_t);
}}};
``
The tables below describe the methods generated when the results of the expressions described are passed as arguments to [link high_level_components.boost_python_class_hpp.class_template_class_t_bases_hel.class_template_class_modifier_fu class_<>::def()]. `x` is an object of the class type being wrapped.
[section `self_t` inplace operators]
In the table below, If `r` is an object of type [link high_level_components.boost_python_operators_hpp.class_template_other other<T>], `y` is an object of type `T`; otherwise, `y` is an object of the same type as `r`.
[table
[[C++ Expression][Python Method Name][C++ Implementation]]
[[`self += r`][`__iadd__`][`x += y`]]
[[`self -= r`][`__isub__`][`x -= y`]]
[[`self *= r`][`__imul__`][`x *= y`]]
[[`self /= r`][`__idiv__`][`x /= y`]]
[[`self %= r`][`__imod__`][`x %= y`]]
[[`self >>= r`][`__irshift__`][`x >>= y`]]
[[`self <<= r`][`__ilshift__`][`x <<= y`]]
[[`self &= r`][`__iand__`][`x &= y`]]
[[`self ^= r`][`__ixor__`][`x ^= y`]]
[[`self |= r`][`__ior__`][`x |= y`]]
]
[endsect]
[section `self_t` comparison functions]
In the tables below, if `r` is of type [link high_level_components.boost_python_operators_hpp.class_self_ns_self_t self_t], `y` is an object of the same type as `x`;
if `l` or `r` is an object of type [link high_level_components.boost_python_operators_hpp.class_template_other other<T>], `y` is an object of type `T`;
otherwise, `y` is an object of the same type as `l` or `r`.
`l` is never of type [link high_level_components.boost_python_operators_hpp.class_self_ns_self_t self_t].

The column of Python Expressions illustrates the expressions that will be supported in Python for objects convertible to the types of x and y. The secondary operation arises due to Python's [@http://www.python.org/doc/ref/customization.html#l2h-89 reflection rules] for rich comparison operators, and are only used when the corresponding operation is not defined as a method of the y object.
[table
[[C++ Expression][Python Method Name][C++ Implementation][Python Expression (primary, secondary)]]
[[`self == r`][`__eq__`][`x == y`][`x == y`, `y == x`]]
[[`l == self`][`__eq__`][`y == x`][`y == x`, `x == y`]]
[[`self != r`][`__ne__`][`x != y`][`x != y`, `y != x`]]
[[`l != self`][`__ne__`][`y != x`][`y != x`, `x != y`]]
[[`self < r`][`__lt__`][`x < y`][`x < y`, `y > x`]]
[[`l < self`][`__gt__`][`y < x`][`y > x`, `x < y`]]
[[`self > r`][`__gt__`][`x > y`][`x > y`, `y < x`]]
[[`l > self`][`__lt__`][`y > x`][`y < x`, `x > y`]]
[[`self <= r`][`__le__`][`x <= y`][`x <= y`, `y >= x`]]
[[`l <= self`][`__ge__`][`y <= x`][`y >= x`, `x <= y`]]
[[`self >= r`][`__ge__`][`x >= y`][`x >= y`, `y <= x`]]
[[`l <= self`][`__le__`][`y >= x`][`y <= x`, `x >= y`]]
]
[endsect]
[section `self_t` non-member operations]
The operations whose names begin with "__r" below will only be called if the left-hand operand does not already support the given operation, as described [@http://www.python.org/doc/current/ref/numeric-types.html#l2h-152 here]. 
[table
[[C++ Expression][Python Method Name][C++ Implementation]]
[[`self + r`][`__add__`][`x + y`]]
[[`l + self`][`__radd__`][`y + x`]]
[[`self - r`][`__sub__`][`x - y`]]
[[`l - self`][`__rsub__`][`y - x`]]
[[`self * r`][`__mult__`][`x * y`]]
[[`l * self`][`__rmult__`][`y * x`]]
[[`self / r`][`__div__`][`x / y`]]
[[`l / self`][`__rdiv__`][`y / x`]]
[[`self % r`][`__mod__`][`x % y`]]
[[`l % self`][`__rmod__`][`y % x`]]
[[`self >> r`][`__rshift__`][`x >> y`]]
[[`l >> self`][`__rrshift__`][`y >> x`]]
[[`self << r`][`__lshift__`][`x << y`]]
[[`l << self`][`__rlshift__`][`y << x`]]
[[`self & r`][`__and__`][`x & y`]]
[[`l & self`][`__rand__`][`y & x`]]
[[`self ^ r`][`__xor__`][`x ^ y`]]
[[`l ^ self`][`__rxor__`][`y ^ x`]]
[[`self | r`][`__or__`][`x | y`]]
[[`l | self`][`__ror__`][`y | x`]]
[[`pow(self, r)`][`__pow__`][`x ** y`]]
[[`pow(l, self)`][`__rpow__`][`y ** x`]]
]
[endsect]
[section `self_t` unary operations]
[table
[[C++ Expression][Python Method Name][C++ Implementation]]
[[`-self`][`__neg__`][`-x`]]
[[`+self`][`__pos__`][`+x`]]
[[`~self`][`__invert__`][`~x`]]
[[`not self` or `!self`][`__nonzero__`][`!!x`]]
]
[endsect]
[section `self_t` value operations]
[table
[[C++ Expression][Python Method Name][C++ Implementation]]
[[`int_(self)`][`__int__`][`long(x)`]]
[[`long_(self)`][`__long__`][`PyLong_FromLong(x)`]]
[[`float_(self)`][`__float__`][`double(x)`]]
[[`complex_(self)`][`__complex__`][`std::complex<double>(x)`]]
[[`str(self)`][`__str__`][`lexical_cast<std::string>(x)`]]
[[`repr(self)`][`__repr__`][`lexical_cast<std::string>(x)`]]
]
[endsect]
[endsect]
[section Class template `other`]
Instances of `other<T>` can be used in operator expressions with [link high_level_components.boost_python_operators_hpp.object_self self]; the result is equivalent to the same expression with a `T` object in place of `other<T>`. Use `other<T>` to prevent construction of a `T` object in case it is heavyweight, when no constructor is available, or simply for clarity.
``
namespace boost { namespace python
{
  template <class T>
  struct other
  {
  };
}}
``
[endsect]
[section Class template `detail::operator_`]
Instantiations of `detail::operator_<>` are used as the return type of operator expressions involving [link high_level_components.boost_python_operators_hpp.object_self self]. This should be considered an implementation detail and is only documented here as a way of showing how the result of self-expressions match calls to [link high_level_components.boost_python_class_hpp.class_template_class_t_bases_hel.class_template_class_modifier_fu `class_<>::def()`].
``
namespace boost { namespace python { namespace detail
{
  template <unspecified>
  struct operator_
  {
  };
}}}
``
[endsect]
[section Object `self`]
``
namespace boost { namespace python
{
  using self_ns::self;
}}
``
[endsect]
[section Example]
``
#include <boost/python/module.hpp>
#include <boost/python/class.hpp>
#include <boost/python/operators.hpp>
#include <boost/operators.hpp>

struct number
   : boost::integer_arithmetic<number>
{
    explicit number(long x_) : x(x_) {}
    operator long() const { return x; }

    template <class T>
    number& operator+=(T const& rhs)
    { x += rhs; return *this; }

    template <class T>
    number& operator-=(T const& rhs)
    { x -= rhs; return *this; }
    
    template <class T>
    number& operator*=(T const& rhs)
    { x *= rhs; return *this; }
    
    template <class T>
    number& operator/=(T const& rhs)
    { x /= rhs; return *this; }
    
    template <class T>
    number& operator%=(T const& rhs)
    { x %= rhs; return *this; }

   long x;
};

using namespace boost::python;
BOOST_PYTHON_MODULE(demo)
{
   class_<number>("number", init<long>())
      // interoperate with self
      .def(self += self)
      .def(self + self)
      .def(self -= self)
      .def(self - self)
      .def(self *= self)
      .def(self * self)
      .def(self /= self)
      .def(self / self)
      .def(self %= self)
      .def(self % self)

      // Convert to Python int
      .def(int_(self))

      // interoperate with long
      .def(self += long())
      .def(self + long())
      .def(long() + self)
      .def(self -= long())
      .def(self - long())
      .def(long() - self)
      .def(self *= long())
      .def(self * long())
      .def(long() * self)
      .def(self /= long())
      .def(self / long())
      .def(long() / self)
      .def(self %= long())
      .def(self % long())
      .def(long() % self)
      ;
}
``
[endsect]
[endsect]