1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
// Copyright Jim Bosch 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/python/numpy.hpp>
#include <cmath>
#include <memory>
#ifndef M_PI
#include <boost/math/constants/constants.hpp>
const double M_PI = boost::math::constants::pi<double>();
#endif
namespace bp = boost::python;
namespace bn = boost::python::numpy;
/**
* A 2x2 matrix class, purely for demonstration purposes.
*
* Instead of wrapping this class with Boost.Python, we'll convert it to/from numpy.ndarray.
*/
class matrix2 {
public:
double & operator()(int i, int j) {
return _data[i*2 + j];
}
double const & operator()(int i, int j) const {
return _data[i*2 + j];
}
double const * data() const { return _data; }
private:
double _data[4];
};
/**
* A 2-element vector class, purely for demonstration purposes.
*
* Instead of wrapping this class with Boost.Python, we'll convert it to/from numpy.ndarray.
*/
class vector2 {
public:
double & operator[](int i) {
return _data[i];
}
double const & operator[](int i) const {
return _data[i];
}
double const * data() const { return _data; }
vector2 operator+(vector2 const & other) const {
vector2 r;
r[0] = _data[0] + other[0];
r[1] = _data[1] + other[1];
return r;
}
vector2 operator-(vector2 const & other) const {
vector2 r;
r[0] = _data[0] - other[0];
r[1] = _data[1] - other[1];
return r;
}
private:
double _data[2];
};
/**
* Matrix-vector multiplication.
*/
vector2 operator*(matrix2 const & m, vector2 const & v) {
vector2 r;
r[0] = m(0, 0) * v[0] + m(0, 1) * v[1];
r[1] = m(1, 0) * v[0] + m(1, 1) * v[1];
return r;
}
/**
* Vector inner product.
*/
double dot(vector2 const & v1, vector2 const & v2) {
return v1[0] * v2[0] + v1[1] * v2[1];
}
/**
* This class represents a simple 2-d Gaussian (Normal) distribution, defined by a
* mean vector 'mu' and a covariance matrix 'sigma'.
*/
class bivariate_gaussian {
public:
vector2 const & get_mu() const { return _mu; }
matrix2 const & get_sigma() const { return _sigma; }
/**
* Evaluate the density of the distribution at a point defined by a two-element vector.
*/
double operator()(vector2 const & p) const {
vector2 u = _cholesky * (p - _mu);
return 0.5 * _cholesky(0, 0) * _cholesky(1, 1) * std::exp(-0.5 * dot(u, u)) / M_PI;
}
/**
* Evaluate the density of the distribution at an (x, y) point.
*/
double operator()(double x, double y) const {
vector2 p;
p[0] = x;
p[1] = y;
return operator()(p);
}
/**
* Construct from a mean vector and covariance matrix.
*/
bivariate_gaussian(vector2 const & mu, matrix2 const & sigma)
: _mu(mu), _sigma(sigma), _cholesky(compute_inverse_cholesky(sigma))
{}
private:
/**
* This evaluates the inverse of the Cholesky factorization of a 2x2 matrix;
* it's just a shortcut in evaluating the density.
*/
static matrix2 compute_inverse_cholesky(matrix2 const & m) {
matrix2 l;
// First do cholesky factorization: l l^t = m
l(0, 0) = std::sqrt(m(0, 0));
l(0, 1) = m(0, 1) / l(0, 0);
l(1, 1) = std::sqrt(m(1, 1) - l(0,1) * l(0,1));
// Now do forward-substitution (in-place) to invert:
l(0, 0) = 1.0 / l(0, 0);
l(1, 0) = l(0, 1) = -l(0, 1) / l(1, 1);
l(1, 1) = 1.0 / l(1, 1);
return l;
}
vector2 _mu;
matrix2 _sigma;
matrix2 _cholesky;
};
/*
* We have a two options for wrapping get_mu and get_sigma into NumPy-returning Python methods:
* - we could deep-copy the data, making totally new NumPy arrays;
* - we could make NumPy arrays that point into the existing memory.
* The latter is often preferable, especially if the arrays are large, but it's dangerous unless
* the reference counting is correct: the returned NumPy array needs to hold a reference that
* keeps the memory it points to from being deallocated as long as it is alive. This is what the
* "owner" argument to from_data does - the NumPy array holds a reference to the owner, keeping it
* from being destroyed.
*
* Note that this mechanism isn't completely safe for data members that can have their internal
* storage reallocated. A std::vector, for instance, can be invalidated when it is resized,
* so holding a Python reference to a C++ class that holds a std::vector may not be a guarantee
* that the memory in the std::vector will remain valid.
*/
/**
* These two functions are custom wrappers for get_mu and get_sigma, providing the shallow-copy
* conversion with reference counting described above.
*
* It's also worth noting that these return NumPy arrays that cannot be modified in Python;
* the const overloads of vector::data() and matrix::data() return const references,
* and passing a const pointer to from_data causes NumPy's 'writeable' flag to be set to false.
*/
static bn::ndarray py_get_mu(bp::object const & self) {
vector2 const & mu = bp::extract<bivariate_gaussian const &>(self)().get_mu();
return bn::from_data(
mu.data(),
bn::dtype::get_builtin<double>(),
bp::make_tuple(2),
bp::make_tuple(sizeof(double)),
self
);
}
static bn::ndarray py_get_sigma(bp::object const & self) {
matrix2 const & sigma = bp::extract<bivariate_gaussian const &>(self)().get_sigma();
return bn::from_data(
sigma.data(),
bn::dtype::get_builtin<double>(),
bp::make_tuple(2, 2),
bp::make_tuple(2 * sizeof(double), sizeof(double)),
self
);
}
/**
* To allow the constructor to work, we need to define some from-Python converters from NumPy arrays
* to the matrix/vector types. The rvalue-from-python functionality is not well-documented in Boost.Python
* itself; you can learn more from boost/python/converter/rvalue_from_python_data.hpp.
*/
/**
* We start with two functions that just copy a NumPy array into matrix/vector objects. These will be used
* in the templated converted below. The first just uses the operator[] overloads provided by
* bp::object.
*/
static void copy_ndarray_to_mv2(bn::ndarray const & array, vector2 & vec) {
vec[0] = bp::extract<double>(array[0]);
vec[1] = bp::extract<double>(array[1]);
}
/**
* Here, we'll take the alternate approach of using the strides to access the array's memory directly.
* This can be much faster for large arrays.
*/
static void copy_ndarray_to_mv2(bn::ndarray const & array, matrix2 & mat) {
// Unfortunately, get_strides() can't be inlined, so it's best to call it once up-front.
Py_intptr_t const * strides = array.get_strides();
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
mat(i, j) = *reinterpret_cast<double const *>(array.get_data() + i * strides[0] + j * strides[1]);
}
}
}
/**
* Here's the actual converter. Because we've separated the differences into the above functions,
* we can write a single template class that works for both matrix2 and vector2.
*/
template <typename T, int N>
struct mv2_from_python {
/**
* Register the converter.
*/
mv2_from_python() {
bp::converter::registry::push_back(
&convertible,
&construct,
bp::type_id< T >()
);
}
/**
* Test to see if we can convert this to the desired type; if not return zero.
* If we can convert, returned pointer can be used by construct().
*/
static void * convertible(PyObject * p) {
try {
bp::object obj(bp::handle<>(bp::borrowed(p)));
std::auto_ptr<bn::ndarray> array(
new bn::ndarray(
bn::from_object(obj, bn::dtype::get_builtin<double>(), N, N, bn::ndarray::V_CONTIGUOUS)
)
);
if (array->shape(0) != 2) return 0;
if (N == 2 && array->shape(1) != 2) return 0;
return array.release();
} catch (bp::error_already_set & err) {
bp::handle_exception();
return 0;
}
}
/**
* Finish the conversion by initializing the C++ object into memory prepared by Boost.Python.
*/
static void construct(PyObject * obj, bp::converter::rvalue_from_python_stage1_data * data) {
// Extract the array we passed out of the convertible() member function.
std::auto_ptr<bn::ndarray> array(reinterpret_cast<bn::ndarray*>(data->convertible));
// Find the memory block Boost.Python has prepared for the result.
typedef bp::converter::rvalue_from_python_storage<T> storage_t;
storage_t * storage = reinterpret_cast<storage_t*>(data);
// Use placement new to initialize the result.
T * m_or_v = new (storage->storage.bytes) T();
// Fill the result with the values from the NumPy array.
copy_ndarray_to_mv2(*array, *m_or_v);
// Finish up.
data->convertible = storage->storage.bytes;
}
};
BOOST_PYTHON_MODULE(gaussian) {
bn::initialize();
// Register the from-python converters
mv2_from_python< vector2, 1 >();
mv2_from_python< matrix2, 2 >();
typedef double (bivariate_gaussian::*call_vector)(vector2 const &) const;
bp::class_<bivariate_gaussian>("bivariate_gaussian", bp::init<bivariate_gaussian const &>())
// Declare the constructor (wouldn't work without the from-python converters).
.def(bp::init< vector2 const &, matrix2 const & >())
// Use our custom reference-counting getters
.add_property("mu", &py_get_mu)
.add_property("sigma", &py_get_sigma)
// First overload accepts a two-element array argument
.def("__call__", (call_vector)&bivariate_gaussian::operator())
// This overload works like a binary NumPy universal function: you can pass
// in scalars or arrays, and the C++ function will automatically be called
// on each element of an array argument.
.def("__call__", bn::binary_ufunc<bivariate_gaussian,double,double,double>::make())
;
}
|