1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
// Boost.Range library
//
// Copyright Neil Groves 2009. Use, modification and
// distribution is subject to the Boost Software License, Version
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//
// For more information, see http://www.boost.org/libs/range/
//
#include <boost/range/algorithm/find.hpp>
#include <boost/test/test_tools.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/assign.hpp>
#include "../test_driver/range_return_test_driver.hpp"
#include <algorithm>
#include <functional>
#include <list>
#include <numeric>
#include <deque>
#include <vector>
namespace boost_range_test_algorithm_find
{
class find_test_policy
{
public:
template<class Container>
BOOST_DEDUCED_TYPENAME boost::range_iterator<Container>::type
test_iter(Container& cont)
{
typedef BOOST_DEDUCED_TYPENAME boost::range_iterator<Container>::type iter_t;
iter_t result = boost::find(cont, 3);
iter_t result2 = boost::find(boost::make_iterator_range(cont), 3);
BOOST_CHECK( result == result2 );
return result;
}
template<boost::range_return_value return_type>
struct test_range
{
template<class Container, class Policy>
BOOST_DEDUCED_TYPENAME boost::range_return<Container,return_type>::type
operator()(Policy&, Container& cont)
{
typedef BOOST_DEDUCED_TYPENAME boost::range_return<Container,return_type>::type result_t;
result_t result = boost::find<return_type>(cont, 3);
result_t result2 = boost::find<return_type>(boost::make_iterator_range(cont), 3);
BOOST_CHECK( result == result2 );
return result;
}
};
template<class Container>
BOOST_DEDUCED_TYPENAME boost::range_iterator<Container>::type
reference(Container& cont)
{
return std::find(cont.begin(), cont.end(), 3);
}
};
template<class Container>
void test_find_container()
{
using namespace boost::assign;
typedef BOOST_DEDUCED_TYPENAME boost::remove_const<Container>::type container_t;
boost::range_test::range_return_test_driver test_driver;
container_t mcont;
Container& cont = mcont;
test_driver(cont, find_test_policy());
mcont.clear();
mcont += 1;
test_driver(cont, find_test_policy());
mcont.clear();
mcont += 1,2,3,4,5,6,7,8,9;
test_driver(cont, find_test_policy());
}
void test_find()
{
test_find_container< std::vector<int> >();
test_find_container< std::list<int> >();
test_find_container< std::deque<int> >();
test_find_container< const std::vector<int> >();
test_find_container< const std::list<int> >();
test_find_container< const std::deque<int> >();
std::vector<int> vi;
const std::vector<int>& cvi = vi;
std::vector<int>::const_iterator it = boost::find(vi, 0);
std::vector<int>::const_iterator it2 = boost::find(cvi, 0);
BOOST_CHECK( it == it2 );
}
// The find algorithm can be used like a "contains" algorithm
// since the returned iterator_range is convertible to bool.
// Therefore if the return value is an empty range it will
// convert to the equivalent to "false" whereas a range that
// is not empty will convert to "true". Therefore one can
// use the syntax boost::find<boost::return_found_end>(rng, x)
// as a contains function.
void test_find_as_contains()
{
std::list<int> l;
for (int i = 0; i < 10; ++i)
l.push_back(i);
BOOST_CHECK(boost::find<boost::return_found_end>(l, 3));
BOOST_CHECK(!boost::find<boost::return_found_end>(l, 10));
}
}
boost::unit_test::test_suite*
init_unit_test_suite(int argc, char* argv[])
{
boost::unit_test::test_suite* test
= BOOST_TEST_SUITE( "RangeTestSuite.algorithm.find" );
test->add( BOOST_TEST_CASE( &boost_range_test_algorithm_find::test_find ) );
test->add( BOOST_TEST_CASE( &boost_range_test_algorithm_find::test_find_as_contains ) );
return test;
}
|