1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
// This example shows how to sort structs using complex multiple part keys using
// string_sort.
//
// Copyright Steven Ross 2009-2014.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/sort for library home page.
#include <boost/sort/spreadsort/string_sort.hpp>
#include <boost/sort/spreadsort/float_sort.hpp>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <vector>
#include <iostream>
#include <fstream>
#include <string>
using std::string;
using namespace boost::sort::spreadsort;
//[generalized_functors
struct DATA_TYPE {
time_t birth;
float net_worth;
string first_name;
string last_name;
};
static const int birth_size = sizeof(time_t);
static const int first_name_offset = birth_size + sizeof(float);
static const boost::uint64_t base_mask = 0xff;
struct lessthan {
inline bool operator()(const DATA_TYPE &x, const DATA_TYPE &y) const {
if (x.birth != y.birth) {
return x.birth < y.birth;
}
if (x.net_worth != y.net_worth) {
return x.net_worth < y.net_worth;
}
if (x.first_name != y.first_name) {
return x.first_name < y.first_name;
}
return x.last_name < y.last_name;
}
};
struct bracket {
inline unsigned char operator()(const DATA_TYPE &x, size_t offset) const {
// Sort date as a signed int, returning the appropriate byte.
if (offset < birth_size) {
const int bit_shift = 8 * (birth_size - offset - 1);
unsigned char result = (x.birth & (base_mask << bit_shift)) >> bit_shift;
// Handling the sign bit. Unnecessary if the data is always positive.
if (offset == 0) {
return result ^ 128;
}
return result;
}
// Sort a signed float. This requires reversing the order of negatives
// because of the way floats are represented in bits.
if (offset < first_name_offset) {
const int bit_shift = 8 * (first_name_offset - offset - 1);
unsigned key = float_mem_cast<float, unsigned>(x.net_worth);
unsigned char result = (key & (base_mask << bit_shift)) >> bit_shift;
// Handling the sign.
if (x.net_worth < 0) {
return 255 - result;
}
// Increasing positives so they are higher than negatives.
if (offset == birth_size) {
return 128 + result;
}
return result;
}
// Sort a string that is before the end. This approach supports embedded
// nulls. If embedded nulls are not required, then just delete the "* 2"
// and the inside of the following if just becomes:
// return x.first_name[offset - first_name_offset];
const unsigned first_name_end_offset =
first_name_offset + x.first_name.size() * 2;
if (offset < first_name_end_offset) {
int char_offset = offset - first_name_offset;
// This signals that the string continues.
if (!(char_offset & 1)) {
return 1;
}
return x.first_name[char_offset >> 1];
}
// This signals that the string has ended, so that shorter strings come
// before longer ones.
if (offset == first_name_end_offset) {
return 0;
}
// The final string needs no special consideration.
return x.last_name[offset - first_name_end_offset - 1];
}
};
struct getsize {
inline size_t operator()(const DATA_TYPE &x) const {
return first_name_offset + x.first_name.size() * 2 + 1 +
x.last_name.size();
}
};
//] [/generalized_functors]
//Pass in an argument to test std::sort
int main(int argc, const char ** argv) {
std::ifstream indata;
std::ofstream outfile;
bool stdSort = false;
unsigned loopCount = 1;
for (int u = 1; u < argc; ++u) {
if (std::string(argv[u]) == "-std")
stdSort = true;
else
loopCount = atoi(argv[u]);
}
double total = 0.0;
//Run multiple loops, if requested
std::vector<DATA_TYPE> array;
for (unsigned u = 0; u < loopCount; ++u) {
indata.open("input.txt", std::ios_base::in | std::ios_base::binary);
if (indata.bad()) {
printf("input.txt could not be opened\n");
return 1;
}
// Read in the data.
DATA_TYPE inval;
while (!indata.eof() ) {
indata >> inval.first_name;
indata >> inval.last_name;
indata.read(reinterpret_cast<char *>(&(inval.birth)), birth_size);
indata.read(reinterpret_cast<char *>(&(inval.net_worth)), sizeof(float));
// Handling nan.
if (inval.net_worth != inval.net_worth) {
inval.net_worth = 0;
}
if (indata.eof())
break;
array.push_back(inval);
}
indata.close();
// Sort the data.
clock_t start, end;
double elapsed;
start = clock();
if (stdSort) {
std::sort(array.begin(), array.end(), lessthan());
} else {
//[generalized_functors_call
string_sort(array.begin(), array.end(), bracket(), getsize(), lessthan());
//] [/generalized_functors_call]
}
end = clock();
elapsed = static_cast<double>(end - start);
if (stdSort) {
outfile.open("standard_sort_out.txt", std::ios_base::out |
std::ios_base::binary | std::ios_base::trunc);
} else {
outfile.open("boost_sort_out.txt", std::ios_base::out |
std::ios_base::binary | std::ios_base::trunc);
}
if (outfile.good()) {
for (unsigned u = 0; u < array.size(); ++u)
outfile << array[u].birth << " " << array[u].net_worth << " "
<< array[u].first_name << " " << array[u].last_name << "\n";
outfile.close();
}
total += elapsed;
array.clear();
}
if (stdSort) {
printf("std::sort elapsed time %f\n", total / CLOCKS_PER_SEC);
} else {
printf("spreadsort elapsed time %f\n", total / CLOCKS_PER_SEC);
}
return 0;
}
|