1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
|
/*! \file dist_graphs.cpp
\brief Produces Scalable Vector Graphic (.svg) files for all distributions.
\details These files can be viewed using most browsers,
though MS Internet Explorer requires a plugin from Adobe.
These file can be converted to .png using Inkscape
(see www.inkscape.org) Export Bit option which by default produces
a Portable Network Graphic file with that same filename but .png suffix instead of .svg.
Using Python, generate.sh does this conversion automatically for all .svg files in a folder.
\author John Maddock and Paul A. Bristow
*/
// Copyright John Maddock 2008.
// Copyright Paul A. Bristow 2008, 2009, 2012, 2016
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifdef _MSC_VER
# pragma warning (disable : 4180) // qualifier applied to function type has no meaning; ignored
# pragma warning (disable : 4503) // decorated name length exceeded, name was truncated
# pragma warning (disable : 4512) // assignment operator could not be generated
# pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'function_ptr' was previously defined as a type
# pragma warning (disable : 4127) // conditional expression is constant
#endif
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <boost/math/distributions.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/svg_plot/svg_2d_plot.hpp>
#include <list>
#include <map>
#include <string>
template <class Dist>
struct is_discrete_distribution
: public std::false_type{}; // Default is continuous distribution.
// Some discrete distributions.
template<class T, class P>
struct is_discrete_distribution<boost::math::bernoulli_distribution<T,P> >
: public std::true_type{};
template<class T, class P>
struct is_discrete_distribution<boost::math::binomial_distribution<T,P> >
: public std::true_type{};
template<class T, class P>
struct is_discrete_distribution<boost::math::negative_binomial_distribution<T,P> >
: public std::true_type{};
template<class T, class P>
struct is_discrete_distribution<boost::math::poisson_distribution<T,P> >
: public std::true_type{};
template<class T, class P>
struct is_discrete_distribution<boost::math::hypergeometric_distribution<T,P> >
: public std::true_type{};
template <class Dist>
struct value_finder
{
value_finder(Dist const& d, typename Dist::value_type v)
: m_dist(d), m_value(v) {}
inline typename Dist::value_type operator()(const typename Dist::value_type& x)
{
return pdf(m_dist, x) - m_value;
}
private:
Dist m_dist;
typename Dist::value_type m_value;
}; // value_finder
template <class Dist>
class distribution_plotter
{
public:
distribution_plotter() : m_pdf(true), m_min_x(0), m_max_x(0), m_min_y(0), m_max_y(0) {}
distribution_plotter(bool pdf) : m_pdf(pdf), m_min_x(0), m_max_x(0), m_min_y(0), m_max_y(0) {}
void add(const Dist& d, const std::string& name)
{
// Add name of distribution to our list for later:
m_distributions.push_back(std::make_pair(name, d));
//
// Get the extent of the distribution from the support:
std::pair<double, double> r = support(d);
double a = r.first;
double b = r.second;
//
// PDF maximum is at the mode (probably):
double mod;
try
{
mod = mode(d);
}
catch(const std::domain_error& )
{ // but if not use the lower limit of support.
mod = a;
}
if((mod <= a) && !is_discrete_distribution<Dist>::value)
{ // Continuous distribution at or below lower limit of support.
double margin = 1e-2; // Margin of 1% (say) to get lowest off the 'end stop'.
if((a != 0) && (fabs(a) > margin))
{
mod = a * (1 + ((a > 0) ? margin : -margin));
}
else
{ // Case of mod near zero?
mod = margin;
}
}
double peek_y = pdf(d, mod);
double min_y = peek_y / 20;
//
// If the extent is "infinite" then find out how large it
// has to be for the PDF to decay to min_y:
//
if(a <= -(std::numeric_limits<double>::max)())
{
std::uintmax_t max_iter = 500;
double guess = mod;
if((pdf(d, 0) > min_y) || (guess == 0))
guess = -1e-3;
a = boost::math::tools::bracket_and_solve_root(
value_finder<Dist>(d, min_y),
guess,
8.0,
true,
boost::math::tools::eps_tolerance<double>(10),
max_iter).first;
}
if(b >= (std::numeric_limits<double>::max)())
{
std::uintmax_t max_iter = 500;
double guess = mod;
if(a <= 0)
if((pdf(d, 0) > min_y) || (guess == 0))
guess = 1e-3;
b = boost::math::tools::bracket_and_solve_root(
value_finder<Dist>(d, min_y),
guess,
8.0,
false,
boost::math::tools::eps_tolerance<double>(10),
max_iter).first;
}
//
// Recalculate peek_y and location of mod so that
// it's not too close to one end of the graph:
// otherwise we may be shooting off to infinity.
//
if(!is_discrete_distribution<Dist>::value)
{
if(mod <= a + (b-a)/50)
{
mod = a + (b-a)/50;
}
if(mod >= b - (b-a)/50)
{
mod = b - (b-a)/50;
}
peek_y = pdf(d, mod);
}
//
// Now set our limits:
//
if(peek_y > m_max_y)
m_max_y = peek_y;
if(m_max_x == m_min_x)
{
m_max_x = b;
m_min_x = a;
}
else
{
if(a < m_min_x)
m_min_x = a;
if(b > m_max_x)
m_max_x = b;
}
} // add
void plot(const std::string& title, const std::string& file)
{
using namespace boost::svg;
static const svg_color colors[5] =
{
darkblue,
darkred,
darkgreen,
darkorange,
chartreuse
};
if(m_pdf == false)
{
m_min_y = 0;
m_max_y = 1;
}
std::cout << "Plotting " << title << " to " << file << std::endl;
svg_2d_plot plot;
plot.image_x_size(750);
plot.image_y_size(400);
plot.copyright_holder("John Maddock").copyright_date("2008").boost_license_on(true);
plot.coord_precision(4); // Avoids any visible steps.
plot.title_font_size(20);
plot.legend_title_font_size(15);
plot.title(title);
if((m_distributions.size() == 1) && (m_distributions.begin()->first == ""))
plot.legend_on(false);
else
plot.legend_on(true);
plot.title_on(true);
//plot.x_major_labels_on(true).y_major_labels_on(true);
//double x_delta = (m_max_x - m_min_x) / 10;
double y_delta = (m_max_y - m_min_y) / 10;
if(is_discrete_distribution<Dist>::value)
plot.x_range(m_min_x - 0.5, m_max_x + 0.5)
.y_range(m_min_y, m_max_y + y_delta);
else
plot.x_range(m_min_x, m_max_x)
.y_range(m_min_y, m_max_y + y_delta);
plot.x_label_on(true).x_label("Random Variable");
plot.y_label_on(true).y_label("Probability");
plot.plot_border_color(lightslategray)
.background_border_color(lightslategray)
.legend_border_color(lightslategray)
.legend_background_color(white);
//
// Work out axis tick intervals:
//
double l = std::floor(std::log10((m_max_x - m_min_x) / 10) + 0.5);
double interval = std::pow(10.0, (int)l);
if(((m_max_x - m_min_x) / interval) > 10)
interval *= 5;
if(is_discrete_distribution<Dist>::value)
{
interval = interval > 1 ? std::floor(interval) : 1;
plot.x_num_minor_ticks(0);
}
plot.x_major_interval(interval);
l = std::floor(std::log10((m_max_y - m_min_y) / 10) + 0.5);
interval = std::pow(10.0, (int)l);
if(((m_max_y - m_min_y) / interval) > 10)
interval *= 5;
plot.y_major_interval(interval);
int color_index = 0;
if(!is_discrete_distribution<Dist>::value)
{
// Continuous distribution:
for(typename std::list<std::pair<std::string, Dist> >::const_iterator i = m_distributions.begin();
i != m_distributions.end(); ++i)
{
double x = m_min_x;
double continuous_interval = (m_max_x - m_min_x) / 200;
std::map<double, double> data;
while(x <= m_max_x)
{
data[x] = m_pdf ? pdf(i->second, x) : cdf(i->second, x);
x += continuous_interval;
}
plot.plot(data, i->first)
.line_on(true)
.line_color(colors[color_index])
.line_width(1.)
.shape(none);
//.bezier_on(true) // Bezier can't cope with badly behaved like uniform & triangular.
++color_index;
color_index = color_index % (sizeof(colors)/sizeof(colors[0]));
}
}
else
{
// Discrete distribution:
double x_width = 0.75 / m_distributions.size();
double x_off = -0.5 * 0.75;
for(typename std::list<std::pair<std::string, Dist> >::const_iterator i = m_distributions.begin();
i != m_distributions.end(); ++i)
{
double x = ceil(m_min_x);
double discrete_interval = 1;
std::map<double, double> data;
while(x <= m_max_x)
{
double p;
try{
p = m_pdf ? pdf(i->second, x) : cdf(i->second, x);
}
catch(const std::domain_error&)
{
p = 0;
}
data[x + x_off] = 0;
data[x + x_off + 0.00001] = p;
data[x + x_off + x_width] = p;
data[x + x_off + x_width + 0.00001] = 0;
x += discrete_interval;
}
x_off += x_width;
svg_2d_plot_series& s = plot.plot(data, i->first);
s.line_on(true)
.line_color(colors[color_index])
.line_width(1.)
.shape(none)
.area_fill(colors[color_index]);
++color_index;
color_index = color_index % (sizeof(colors)/sizeof(colors[0]));
}
} // discrete
plot.write(file);
} // void plot(const std::string& title, const std::string& file)
private:
bool m_pdf;
std::list<std::pair<std::string, Dist> > m_distributions;
double m_min_x, m_max_x, m_min_y, m_max_y;
};
int main()
{
try
{
std::cout << "Distribution Graphs" << std::endl;
distribution_plotter<boost::math::gamma_distribution<> >
gamma_plotter;
gamma_plotter.add(boost::math::gamma_distribution<>(0.75), "shape = 0.75");
gamma_plotter.add(boost::math::gamma_distribution<>(1), "shape = 1");
gamma_plotter.add(boost::math::gamma_distribution<>(3), "shape = 3");
gamma_plotter.plot("Gamma Distribution PDF With Scale = 1", "gamma1_pdf.svg");
distribution_plotter<boost::math::gamma_distribution<> >
gamma_plotter2;
gamma_plotter2.add(boost::math::gamma_distribution<>(2, 0.5), "scale = 0.5");
gamma_plotter2.add(boost::math::gamma_distribution<>(2, 1), "scale = 1");
gamma_plotter2.add(boost::math::gamma_distribution<>(2, 2), "scale = 2");
gamma_plotter2.plot("Gamma Distribution PDF With Shape = 2", "gamma2_pdf.svg");
distribution_plotter<boost::math::normal>
normal_plotter;
normal_plotter.add(boost::math::normal(0, 1), "μ = 0, σ = 1");
normal_plotter.add(boost::math::normal(0, 0.5), "μ = 0, σ = 0.5");
normal_plotter.add(boost::math::normal(0, 2), "μ = 0, σ = 2");
normal_plotter.add(boost::math::normal(-1, 1), "μ = -1, σ = 1");
normal_plotter.add(boost::math::normal(1, 1), "μ = 1, σ = 1");
normal_plotter.plot("Normal Distribution PDF", "normal_pdf.svg");
distribution_plotter<boost::math::laplace>
laplace_plotter;
laplace_plotter.add(boost::math::laplace(0, 1), "μ = 0, σ = 1");
laplace_plotter.add(boost::math::laplace(0, 0.5), "μ = 0, σ = 0.5");
laplace_plotter.add(boost::math::laplace(0, 2), "μ = 0, σ = 2");
laplace_plotter.add(boost::math::laplace(-1, 1), "μ = -1, σ = 1");
laplace_plotter.add(boost::math::laplace(1, 1), "μ = 1, σ = 1");
laplace_plotter.plot("Laplace Distribution PDF", "laplace_pdf.svg");
distribution_plotter<boost::math::non_central_chi_squared>
nc_cs_plotter;
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 0), "v=20, λ=0");
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 1), "v=20, λ=1");
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 5), "v=20, λ=5");
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 10), "v=20, λ=10");
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 20), "v=20, λ=20");
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 100), "v=20, λ=100");
nc_cs_plotter.plot("Non Central Chi Squared PDF", "nccs_pdf.svg");
distribution_plotter<boost::math::non_central_beta>
nc_beta_plotter;
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 0), "α=10, β=15, δ=0");
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 1), "α=10, β=15, δ=1");
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 5), "α=10, β=15, δ=5");
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 10), "α=10, β=15, δ=10");
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 40), "α=10, β=15, δ=40");
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 100), "α=10, β=15, δ=100");
nc_beta_plotter.plot("Non Central Beta PDF", "nc_beta_pdf.svg");
distribution_plotter<boost::math::non_central_f>
nc_f_plotter;
nc_f_plotter.add(boost::math::non_central_f(10, 20, 0), "v1=10, v2=20, λ=0");
nc_f_plotter.add(boost::math::non_central_f(10, 20, 1), "v1=10, v2=20, λ=1");
nc_f_plotter.add(boost::math::non_central_f(10, 20, 5), "v1=10, v2=20, λ=5");
nc_f_plotter.add(boost::math::non_central_f(10, 20, 10), "v1=10, v2=20, λ=10");
nc_f_plotter.add(boost::math::non_central_f(10, 20, 40), "v1=10, v2=20, λ=40");
nc_f_plotter.add(boost::math::non_central_f(10, 20, 100), "v1=10, v2=20, λ=100");
nc_f_plotter.plot("Non Central F PDF", "nc_f_pdf.svg");
distribution_plotter<boost::math::non_central_t>
nc_t_plotter;
nc_t_plotter.add(boost::math::non_central_t(10, -10), "v=10, δ=-10");
nc_t_plotter.add(boost::math::non_central_t(10, -5), "v=10, δ=-5");
nc_t_plotter.add(boost::math::non_central_t(10, 0), "v=10, δ=0");
nc_t_plotter.add(boost::math::non_central_t(10, 5), "v=10, δ=5");
nc_t_plotter.add(boost::math::non_central_t(10, 10), "v=10, δ=10");
nc_t_plotter.add(boost::math::non_central_t(std::numeric_limits<double>::infinity(), 15), "v=inf, δ=15");
nc_t_plotter.plot("Non Central T PDF", "nc_t_pdf.svg");
distribution_plotter<boost::math::non_central_t>
nc_t_CDF_plotter(false);
nc_t_CDF_plotter.add(boost::math::non_central_t(10, -10), "v=10, δ=-10");
nc_t_CDF_plotter.add(boost::math::non_central_t(10, -5), "v=10, δ=-5");
nc_t_CDF_plotter.add(boost::math::non_central_t(10, 0), "v=10, δ=0");
nc_t_CDF_plotter.add(boost::math::non_central_t(10, 5), "v=10, δ=5");
nc_t_CDF_plotter.add(boost::math::non_central_t(10, 10), "v=10, δ=10");
nc_t_CDF_plotter.add(boost::math::non_central_t(std::numeric_limits<double>::infinity(), 15), "v=inf, δ=15");
nc_t_CDF_plotter.plot("Non Central T CDF", "nc_t_cdf.svg");
distribution_plotter<boost::math::beta_distribution<> >
beta_plotter;
beta_plotter.add(boost::math::beta_distribution<>(0.5, 0.5), "alpha=0.5, beta=0.5");
beta_plotter.add(boost::math::beta_distribution<>(5, 1), "alpha=5, beta=1");
beta_plotter.add(boost::math::beta_distribution<>(1, 3), "alpha=1, beta=3");
beta_plotter.add(boost::math::beta_distribution<>(2, 2), "alpha=2, beta=2");
beta_plotter.add(boost::math::beta_distribution<>(2, 5), "alpha=2, beta=5");
beta_plotter.plot("Beta Distribution PDF", "beta_pdf.svg");
distribution_plotter<boost::math::cauchy_distribution<> >
cauchy_plotter;
cauchy_plotter.add(boost::math::cauchy_distribution<>(-5, 1), "location = -5");
cauchy_plotter.add(boost::math::cauchy_distribution<>(0, 1), "location = 0");
cauchy_plotter.add(boost::math::cauchy_distribution<>(5, 1), "location = 5");
cauchy_plotter.plot("Cauchy Distribution PDF (scale = 1)", "cauchy_pdf1.svg");
distribution_plotter<boost::math::cauchy_distribution<> >
cauchy_plotter2;
cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 0.5), "scale = 0.5");
cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 1), "scale = 1");
cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 2), "scale = 2");
cauchy_plotter2.plot("Cauchy Distribution PDF (location = 0)", "cauchy_pdf2.svg");
distribution_plotter<boost::math::chi_squared_distribution<> >
chi_squared_plotter;
//chi_squared_plotter.add(boost::math::chi_squared_distribution<>(1), "v=1");
chi_squared_plotter.add(boost::math::chi_squared_distribution<>(2), "v=2");
chi_squared_plotter.add(boost::math::chi_squared_distribution<>(5), "v=5");
chi_squared_plotter.add(boost::math::chi_squared_distribution<>(10), "v=10");
chi_squared_plotter.plot("Chi Squared Distribution PDF", "chi_squared_pdf.svg");
distribution_plotter<boost::math::exponential_distribution<> >
exponential_plotter;
exponential_plotter.add(boost::math::exponential_distribution<>(0.5), "λ=0.5");
exponential_plotter.add(boost::math::exponential_distribution<>(1), "λ=1");
exponential_plotter.add(boost::math::exponential_distribution<>(2), "λ=2");
exponential_plotter.plot("Exponential Distribution PDF", "exponential_pdf.svg");
distribution_plotter<boost::math::extreme_value_distribution<> >
extreme_value_plotter;
extreme_value_plotter.add(boost::math::extreme_value_distribution<>(-5), "location=-5");
extreme_value_plotter.add(boost::math::extreme_value_distribution<>(0), "location=0");
extreme_value_plotter.add(boost::math::extreme_value_distribution<>(5), "location=5");
extreme_value_plotter.plot("Extreme Value Distribution PDF (shape=1)", "extreme_value_pdf1.svg");
distribution_plotter<boost::math::extreme_value_distribution<> >
extreme_value_plotter2;
extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 0.5), "shape=0.5");
extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 1), "shape=1");
extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 2), "shape=2");
extreme_value_plotter2.plot("Extreme Value Distribution PDF (location=0)", "extreme_value_pdf2.svg");
distribution_plotter<boost::math::fisher_f_distribution<> >
fisher_f_plotter;
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(4, 4), "n=4, m=4");
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(10, 4), "n=10, m=4");
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(10, 10), "n=10, m=10");
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(4, 10), "n=4, m=10");
fisher_f_plotter.plot("F Distribution PDF", "fisher_f_pdf.svg");
distribution_plotter<boost::math::kolmogorov_smirnov_distribution<> >
kolmogorov_smirnov_cdf_plotter(false);
kolmogorov_smirnov_cdf_plotter.add(boost::math::kolmogorov_smirnov_distribution<>(1), "n=1");
kolmogorov_smirnov_cdf_plotter.add(boost::math::kolmogorov_smirnov_distribution<>(2), "n=2");
kolmogorov_smirnov_cdf_plotter.add(boost::math::kolmogorov_smirnov_distribution<>(5), "n=5");
kolmogorov_smirnov_cdf_plotter.add(boost::math::kolmogorov_smirnov_distribution<>(10), "n=10");
kolmogorov_smirnov_cdf_plotter.plot("Kolmogorov-Smirnov Distribution CDF", "kolmogorov_smirnov_cdf.svg");
distribution_plotter<boost::math::kolmogorov_smirnov_distribution<> >
kolmogorov_smirnov_pdf_plotter;
kolmogorov_smirnov_pdf_plotter.add(boost::math::kolmogorov_smirnov_distribution<>(1), "n=1");
kolmogorov_smirnov_pdf_plotter.add(boost::math::kolmogorov_smirnov_distribution<>(2), "n=2");
kolmogorov_smirnov_pdf_plotter.add(boost::math::kolmogorov_smirnov_distribution<>(5), "n=5");
kolmogorov_smirnov_pdf_plotter.add(boost::math::kolmogorov_smirnov_distribution<>(10), "n=10");
kolmogorov_smirnov_pdf_plotter.plot("Kolmogorov-Smirnov Distribution PDF", "kolmogorov_smirnov_pdf.svg");
distribution_plotter<boost::math::lognormal_distribution<> >
lognormal_plotter;
lognormal_plotter.add(boost::math::lognormal_distribution<>(-1), "location=-1");
lognormal_plotter.add(boost::math::lognormal_distribution<>(0), "location=0");
lognormal_plotter.add(boost::math::lognormal_distribution<>(1), "location=1");
lognormal_plotter.plot("Lognormal Distribution PDF (scale=1)", "lognormal_pdf1.svg");
distribution_plotter<boost::math::lognormal_distribution<> >
lognormal_plotter2;
lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 0.5), "scale=0.5");
lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 1), "scale=1");
lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 2), "scale=2");
lognormal_plotter2.plot("Lognormal Distribution PDF (location=0)", "lognormal_pdf2.svg");
distribution_plotter<boost::math::pareto_distribution<> >
pareto_plotter; // Rely on 2nd parameter shape = 1 default.
pareto_plotter.add(boost::math::pareto_distribution<>(1), "scale=1");
pareto_plotter.add(boost::math::pareto_distribution<>(2), "scale=2");
pareto_plotter.add(boost::math::pareto_distribution<>(3), "scale=3");
pareto_plotter.plot("Pareto Distribution PDF (shape=1)", "pareto_pdf1.svg");
distribution_plotter<boost::math::pareto_distribution<> >
pareto_plotter2;
pareto_plotter2.add(boost::math::pareto_distribution<>(1, 0.5), "shape=0.5");
pareto_plotter2.add(boost::math::pareto_distribution<>(1, 1), "shape=1");
pareto_plotter2.add(boost::math::pareto_distribution<>(1, 2), "shape=2");
pareto_plotter2.plot("Pareto Distribution PDF (scale=1)", "pareto_pdf2.svg");
distribution_plotter<boost::math::rayleigh_distribution<> >
rayleigh_plotter;
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(0.5), "σ=0.5");
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(1), "σ=1");
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(2), "σ=2");
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(4), "σ=4");
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(10), "σ=10");
rayleigh_plotter.plot("Rayleigh Distribution PDF", "rayleigh_pdf.svg");
distribution_plotter<boost::math::rayleigh_distribution<> >
rayleigh_cdf_plotter(false);
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(0.5), "σ=0.5");
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(1), "σ=1");
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(2), "σ=2");
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(4), "σ=4");
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(10), "σ=10");
rayleigh_cdf_plotter.plot("Rayleigh Distribution CDF", "rayleigh_cdf.svg");
distribution_plotter<boost::math::skew_normal_distribution<> >
skew_normal_plotter;
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,0), "{0,1,0}");
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,1), "{0,1,1}");
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,4), "{0,1,4}");
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,20), "{0,1,20}");
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,-2), "{0,1,-2}");
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(-2,0.5,-1), "{-2,0.5,-1}");
skew_normal_plotter.plot("Skew Normal Distribution PDF", "skew_normal_pdf.svg");
distribution_plotter<boost::math::skew_normal_distribution<> >
skew_normal_cdf_plotter(false);
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,0), "{0,1,0}");
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,1), "{0,1,1}");
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,4), "{0,1,4}");
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,20), "{0,1,20}");
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,-2), "{0,1,-2}");
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(-2,0.5,-1), "{-2,0.5,-1}");
skew_normal_cdf_plotter.plot("Skew Normal Distribution CDF", "skew_normal_cdf.svg");
distribution_plotter<boost::math::triangular_distribution<> >
triangular_plotter;
triangular_plotter.add(boost::math::triangular_distribution<>(-1,0,1), "{-1,0,1}");
triangular_plotter.add(boost::math::triangular_distribution<>(0,1,1), "{0,1,1}");
triangular_plotter.add(boost::math::triangular_distribution<>(0,1,3), "{0,1,3}");
triangular_plotter.add(boost::math::triangular_distribution<>(0,0.5,1), "{0,0.5,1}");
triangular_plotter.add(boost::math::triangular_distribution<>(-2,0,3), "{-2,0,3}");
triangular_plotter.plot("Triangular Distribution PDF", "triangular_pdf.svg");
distribution_plotter<boost::math::triangular_distribution<> >
triangular_cdf_plotter(false);
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(-1,0,1), "{-1,0,1}");
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,1,1), "{0,1,1}");
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,1,3), "{0,1,3}");
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,0.5,1), "{0,0.5,1}");
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(-2,0,3), "{-2,0,3}");
triangular_cdf_plotter.plot("Triangular Distribution CDF", "triangular_cdf.svg");
distribution_plotter<boost::math::students_t_distribution<> >
students_t_plotter;
students_t_plotter.add(boost::math::students_t_distribution<>(1), "v=1");
students_t_plotter.add(boost::math::students_t_distribution<>(5), "v=5");
students_t_plotter.add(boost::math::students_t_distribution<>(30), "v=30");
students_t_plotter.plot("Students T Distribution PDF", "students_t_pdf.svg");
distribution_plotter<boost::math::weibull_distribution<> >
weibull_plotter;
weibull_plotter.add(boost::math::weibull_distribution<>(0.75), "shape=0.75");
weibull_plotter.add(boost::math::weibull_distribution<>(1), "shape=1");
weibull_plotter.add(boost::math::weibull_distribution<>(5), "shape=5");
weibull_plotter.add(boost::math::weibull_distribution<>(10), "shape=10");
weibull_plotter.plot("Weibull Distribution PDF (scale=1)", "weibull_pdf1.svg");
distribution_plotter<boost::math::weibull_distribution<> >
weibull_plotter2;
weibull_plotter2.add(boost::math::weibull_distribution<>(3, 0.5), "scale=0.5");
weibull_plotter2.add(boost::math::weibull_distribution<>(3, 1), "scale=1");
weibull_plotter2.add(boost::math::weibull_distribution<>(3, 2), "scale=2");
weibull_plotter2.plot("Weibull Distribution PDF (shape=3)", "weibull_pdf2.svg");
distribution_plotter<boost::math::uniform_distribution<> >
uniform_plotter;
uniform_plotter.add(boost::math::uniform_distribution<>(0, 1), "{0,1}");
uniform_plotter.add(boost::math::uniform_distribution<>(0, 3), "{0,3}");
uniform_plotter.add(boost::math::uniform_distribution<>(-2, 3), "{-2,3}");
uniform_plotter.add(boost::math::uniform_distribution<>(-1, 1), "{-1,1}");
uniform_plotter.plot("Uniform Distribution PDF", "uniform_pdf.svg");
distribution_plotter<boost::math::uniform_distribution<> >
uniform_cdf_plotter(false);
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(0, 1), "{0,1}");
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(0, 3), "{0,3}");
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(-2, 3), "{-2,3}");
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(-1, 1), "{-1,1}");
uniform_cdf_plotter.plot("Uniform Distribution CDF", "uniform_cdf.svg");
distribution_plotter<boost::math::bernoulli_distribution<> >
bernoulli_plotter;
bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.25), "p=0.25");
bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.5), "p=0.5");
bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.75), "p=0.75");
bernoulli_plotter.plot("Bernoulli Distribution PDF", "bernoulli_pdf.svg");
distribution_plotter<boost::math::bernoulli_distribution<> >
bernoulli_cdf_plotter(false);
bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.25), "p=0.25");
bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.5), "p=0.5");
bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.75), "p=0.75");
bernoulli_cdf_plotter.plot("Bernoulli Distribution CDF", "bernoulli_cdf.svg");
distribution_plotter<boost::math::binomial_distribution<> >
binomial_plotter;
binomial_plotter.add(boost::math::binomial_distribution<>(5, 0.5), "n=5 p=0.5");
binomial_plotter.add(boost::math::binomial_distribution<>(20, 0.5), "n=20 p=0.5");
binomial_plotter.add(boost::math::binomial_distribution<>(50, 0.5), "n=50 p=0.5");
binomial_plotter.plot("Binomial Distribution PDF", "binomial_pdf_1.svg");
distribution_plotter<boost::math::binomial_distribution<> >
binomial_plotter2;
binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.1), "n=20 p=0.1");
binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.5), "n=20 p=0.5");
binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.9), "n=20 p=0.9");
binomial_plotter2.plot("Binomial Distribution PDF", "binomial_pdf_2.svg");
distribution_plotter<boost::math::negative_binomial_distribution<> >
negative_binomial_plotter;
negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.25), "n=20 p=0.25");
negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.5), "n=20 p=0.5");
negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.75), "n=20 p=0.75");
negative_binomial_plotter.plot("Negative Binomial Distribution PDF", "negative_binomial_pdf_1.svg");
distribution_plotter<boost::math::negative_binomial_distribution<> >
negative_binomial_plotter2;
negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(10, 0.5), "n=10 p=0.5");
negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(20, 0.5), "n=20 p=0.5");
negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(70, 0.5), "n=70 p=0.5");
negative_binomial_plotter2.plot("Negative Binomial Distribution PDF", "negative_binomial_pdf_2.svg");
distribution_plotter<boost::math::poisson_distribution<> >
poisson_plotter;
poisson_plotter.add(boost::math::poisson_distribution<>(5), "λ=5");
poisson_plotter.add(boost::math::poisson_distribution<>(10), "λ=10");
poisson_plotter.add(boost::math::poisson_distribution<>(20), "λ=20");
poisson_plotter.plot("Poisson Distribution PDF", "poisson_pdf_1.svg");
distribution_plotter<boost::math::hypergeometric_distribution<> >
hypergeometric_plotter;
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 50, 500), "N=500, r=50, n=30");
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 100, 500), "N=500, r=100, n=30");
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 250, 500), "N=500, r=250, n=30");
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 400, 500), "N=500, r=400, n=30");
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 450, 500), "N=500, r=450, n=30");
hypergeometric_plotter.plot("Hypergeometric Distribution PDF", "hypergeometric_pdf_1.svg");
distribution_plotter<boost::math::hypergeometric_distribution<> >
hypergeometric_plotter2;
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(50, 50, 500), "N=500, r=50, n=50");
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(100, 50, 500), "N=500, r=50, n=100");
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(250, 50, 500), "N=500, r=50, n=250");
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(400, 50, 500), "N=500, r=50, n=400");
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(450, 50, 500), "N=500, r=50, n=450");
hypergeometric_plotter2.plot("Hypergeometric Distribution PDF", "hypergeometric_pdf_2.svg");
}
catch (std::exception ex)
{
std::cout << ex.what() << std::endl;
}
/* these graphs for hyperexponential distribution not used.
distribution_plotter<boost::math::hyperexponential_distribution<> >
hyperexponential_plotter;
{
const double probs1_1[] = {1.0};
const double rates1_1[] = {1.0};
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs1_1,rates1_1), "α=(1.0), λ=(1.0)");
const double probs2_1[] = {0.1,0.9};
const double rates2_1[] = {0.5,1.5};
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs2_1,rates2_1), "α=(0.1,0.9), λ=(0.5,1.5)");
const double probs2_2[] = {0.9,0.1};
const double rates2_2[] = {0.5,1.5};
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs2_2,rates2_2), "α=(0.9,0.1), λ=(0.5,1.5)");
const double probs3_1[] = {0.2,0.3,0.5};
const double rates3_1[] = {0.5,1.0,1.5};
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs3_1,rates3_1), "α=(0.2,0.3,0.5), λ=(0.5,1.0,1.5)");
const double probs3_2[] = {0.5,0.3,0.2};
const double rates3_2[] = {0.5,1.0,1.5};
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs3_1,rates3_1), "α=(0.5,0.3,0.2), λ=(0.5,1.0,1.5)");
}
hyperexponential_plotter.plot("Hyperexponential Distribution PDF", "hyperexponential_pdf.svg");
distribution_plotter<boost::math::hyperexponential_distribution<> >
hyperexponential_plotter2;
{
const double rates[] = {0.5,1.5};
const double probs1[] = {0.1,0.9};
hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs1,rates), "α=(0.1,0.9), λ=(0.5,1.5)");
const double probs2[] = {0.6,0.4};
hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs2,rates), "α=(0.6,0.4), λ=(0.5,1.5)");
const double probs3[] = {0.9,0.1};
hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs3,rates), "α=(0.9,0.1), λ=(0.5,1.5)");
}
hyperexponential_plotter2.plot("Hyperexponential Distribution PDF (Different Probabilities, Same Rates)", "hyperexponential_pdf_samerate.svg");
distribution_plotter<boost::math::hyperexponential_distribution<> >
hyperexponential_plotter3;
{
const double probs1[] = {1.0};
const double rates1[] = {2.0};
hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs1,rates1), "α=(1.0), λ=(2.0)");
const double probs2[] = {0.5,0.5};
const double rates2[] = {0.3,1.5};
hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs2,rates2), "α=(0.5,0.5), λ=(0.3,1.5)");
const double probs3[] = {1.0/3.0,1.0/3.0,1.0/3.0};
const double rates3[] = {0.2,1.5,3.0};
hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs2,rates2), "α=(1.0/3.0,1.0/3.0,1.0/3.0), λ=(0.2,1.5,3.0)");
}
hyperexponential_plotter3.plot("Hyperexponential Distribution PDF (Different Number of Phases, Same Mean)", "hyperexponential_pdf_samemean.svg");
*/
} // int main()
|