1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2015 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2015 Mateusz Loskot, London, UK.
// Copyright (c) 2014-2015 Adam Wulkiewicz, Lodz, Poland.
// This file was modified by Oracle on 2014-2022.
// Modifications copyright (c) 2014-2022 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_EQUALS_INTERFACE_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_EQUALS_INTERFACE_HPP
#include <cstddef>
#include <boost/geometry/core/coordinate_dimension.hpp>
#include <boost/geometry/core/reverse_dispatch.hpp>
#include <boost/geometry/core/tag.hpp>
#include <boost/geometry/core/tag_cast.hpp>
#include <boost/geometry/geometries/adapted/boost_variant.hpp>
#include <boost/geometry/geometries/concepts/check.hpp>
#include <boost/geometry/algorithms/not_implemented.hpp>
#include <boost/geometry/strategies/default_strategy.hpp>
#include <boost/geometry/strategies/detail.hpp>
#include <boost/geometry/strategies/relate/services.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template
<
typename Geometry1,
typename Geometry2,
typename Tag1 = tag_t<Geometry1>,
typename Tag2 = tag_t<Geometry2>,
typename CastedTag1 = tag_cast_t<Tag1, pointlike_tag, linear_tag, areal_tag>,
typename CastedTag2 = tag_cast_t<Tag2, pointlike_tag, linear_tag, areal_tag>,
std::size_t DimensionCount = dimension<Geometry1>::type::value,
bool Reverse = reverse_dispatch<Geometry1, Geometry2>::type::value
>
struct equals: not_implemented<Tag1, Tag2>
{};
// If reversal is needed, perform it
template
<
typename Geometry1, typename Geometry2,
typename Tag1, typename Tag2,
typename CastedTag1, typename CastedTag2,
std::size_t DimensionCount
>
struct equals<Geometry1, Geometry2, Tag1, Tag2, CastedTag1, CastedTag2, DimensionCount, true>
: equals<Geometry2, Geometry1, Tag2, Tag1, CastedTag2, CastedTag1, DimensionCount, false>
{
template <typename Strategy>
static inline bool apply(Geometry1 const& g1, Geometry2 const& g2, Strategy const& strategy)
{
return equals
<
Geometry2, Geometry1,
Tag2, Tag1,
CastedTag2, CastedTag1,
DimensionCount,
false
>::apply(g2, g1, strategy);
}
};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
namespace resolve_strategy
{
template
<
typename Strategy,
bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategy>::value
>
struct equals
{
template <typename Geometry1, typename Geometry2>
static inline bool apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Strategy const& strategy)
{
return dispatch::equals
<
Geometry1, Geometry2
>::apply(geometry1, geometry2, strategy);
}
};
template <typename Strategy>
struct equals<Strategy, false>
{
template <typename Geometry1, typename Geometry2>
static inline bool apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Strategy const& strategy)
{
using strategies::relate::services::strategy_converter;
return dispatch::equals
<
Geometry1, Geometry2
>::apply(geometry1, geometry2,
strategy_converter<Strategy>::get(strategy));
}
};
template <>
struct equals<default_strategy, false>
{
template <typename Geometry1, typename Geometry2>
static inline bool apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
default_strategy)
{
typedef typename strategies::relate::services::default_strategy
<
Geometry1,
Geometry2
>::type strategy_type;
return dispatch::equals
<
Geometry1, Geometry2
>::apply(geometry1, geometry2, strategy_type());
}
};
} // namespace resolve_strategy
namespace resolve_dynamic {
template
<
typename Geometry1, typename Geometry2,
typename Tag1 = geometry::tag_t<Geometry1>,
typename Tag2 = geometry::tag_t<Geometry2>
>
struct equals
{
template <typename Strategy>
static inline bool apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Strategy const& strategy)
{
concepts::check_concepts_and_equal_dimensions
<
Geometry1 const,
Geometry2 const
>();
return resolve_strategy::equals
<
Strategy
>::apply(geometry1, geometry2, strategy);
}
};
template <typename Geometry1, typename Geometry2, typename Tag2>
struct equals<Geometry1, Geometry2, dynamic_geometry_tag, Tag2>
{
template <typename Strategy>
static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2,
Strategy const& strategy)
{
bool result = false;
traits::visit<Geometry1>::apply([&](auto const& g1)
{
result = equals
<
util::remove_cref_t<decltype(g1)>,
Geometry2
>::apply(g1, geometry2, strategy);
}, geometry1);
return result;
}
};
template <typename Geometry1, typename Geometry2, typename Tag1>
struct equals<Geometry1, Geometry2, Tag1, dynamic_geometry_tag>
{
template <typename Strategy>
static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2,
Strategy const& strategy)
{
bool result = false;
traits::visit<Geometry2>::apply([&](auto const& g2)
{
result = equals
<
Geometry1,
util::remove_cref_t<decltype(g2)>
>::apply(geometry1, g2, strategy);
}, geometry2);
return result;
}
};
template <typename Geometry1, typename Geometry2>
struct equals<Geometry1, Geometry2, dynamic_geometry_tag, dynamic_geometry_tag>
{
template <typename Strategy>
static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2,
Strategy const& strategy)
{
bool result = false;
traits::visit<Geometry1, Geometry2>::apply([&](auto const& g1, auto const& g2)
{
result = equals
<
util::remove_cref_t<decltype(g1)>,
util::remove_cref_t<decltype(g2)>
>::apply(g1, g2, strategy);
}, geometry1, geometry2);
return result;
}
};
} // namespace resolve_dynamic
/*!
\brief \brief_check{are spatially equal}
\details \details_check12{equals, is spatially equal}. Spatially equal means
that the same point set is included. A box can therefore be spatially equal
to a ring or a polygon, or a linestring can be spatially equal to a
multi-linestring or a segment. This only works theoretically, not all
combinations are implemented yet.
\ingroup equals
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\tparam Strategy \tparam_strategy{Equals}
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\param strategy \param_strategy{equals}
\return \return_check2{are spatially equal}
\qbk{distinguish,with strategy}
\qbk{[include reference/algorithms/equals.qbk]}
*/
template <typename Geometry1, typename Geometry2, typename Strategy>
inline bool equals(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Strategy const& strategy)
{
return resolve_dynamic::equals
<
Geometry1, Geometry2
>::apply(geometry1, geometry2, strategy);
}
/*!
\brief \brief_check{are spatially equal}
\details \details_check12{equals, is spatially equal}. Spatially equal means
that the same point set is included. A box can therefore be spatially equal
to a ring or a polygon, or a linestring can be spatially equal to a
multi-linestring or a segment. This only works theoretically, not all
combinations are implemented yet.
\ingroup equals
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\return \return_check2{are spatially equal}
\qbk{[include reference/algorithms/equals.qbk]}
*/
template <typename Geometry1, typename Geometry2>
inline bool equals(Geometry1 const& geometry1, Geometry2 const& geometry2)
{
return resolve_dynamic::equals
<
Geometry1, Geometry2
>::apply(geometry1, geometry2, default_strategy());
}
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_EQUALS_INTERFACE_HPP
|