1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
[section:nc_f_dist Noncentral F Distribution]
``#include <boost/math/distributions/non_central_f.hpp>``
namespace boost{ namespace math{
template <class RealType = double,
class ``__Policy`` = ``__policy_class`` >
class non_central_f_distribution;
typedef non_central_f_distribution<> non_central_f;
template <class RealType, class ``__Policy``>
class non_central_f_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
// Constructor:
BOOST_MATH_GPU_ENABLED non_central_f_distribution(RealType v1, RealType v2, RealType lambda);
// Accessor to degrees_of_freedom parameters v1 & v2:
BOOST_MATH_GPU_ENABLED RealType degrees_of_freedom1()const;
BOOST_MATH_GPU_ENABLED RealType degrees_of_freedom2()const;
// Accessor to non-centrality parameter lambda:
BOOST_MATH_GPU_ENABLED RealType non_centrality()const;
};
}} // namespaces
The noncentral F distribution is a generalization of the __F_distrib.
It is defined as the ratio
[expression F = (X/v1) / (Y/v2)]
where X is a noncentral [chi][super 2]
random variable with /v1/ degrees of freedom and non-centrality parameter [lambda],
and Y is a central [chi][super 2] random variable with /v2/ degrees of freedom.
This gives the following PDF:
[equation nc_f_ref1]
where ['L[sub a][super b](c)] is a generalised Laguerre polynomial and ['B(a,b)] is the
__beta function, or
[equation nc_f_ref2]
The following graph illustrates how the distribution changes
for different values of [lambda]:
[graph nc_f_pdf]
[h4 Member Functions]
BOOST_MATH_GPU_ENABLED non_central_f_distribution(RealType v1, RealType v2, RealType lambda);
Constructs a non-central beta distribution with parameters /v1/ and /v2/
and non-centrality parameter /lambda/.
Requires /v1/ > 0, /v2/ > 0 and lambda >= 0, otherwise calls __domain_error.
BOOST_MATH_GPU_ENABLED RealType degrees_of_freedom1()const;
Returns the parameter /v1/ from which this object was constructed.
BOOST_MATH_GPU_ENABLED RealType degrees_of_freedom2()const;
Returns the parameter /v2/ from which this object was constructed.
BOOST_MATH_GPU_ENABLED RealType non_centrality()const;
Returns the non-centrality parameter /lambda/ from which this object was constructed.
[h4 Non-member Accessors]
All the [link math_toolkit.dist_ref.nmp usual non-member accessor functions]
that are generic to all distributions are supported: __usual_accessors.
For this distribution all non-member accessor functions are marked with `BOOST_MATH_GPU_ENABLED` and can
be run on both host and device.
The domain of the random variable is \[0, +[infin]\].
[h4 Accuracy]
This distribution is implemented in terms of the
__non_central_beta_distrib: refer to that distribution for accuracy data.
[h4 Tests]
Since this distribution is implemented by adapting another distribution,
the tests consist of basic sanity checks computed by the
[@http://www.r-project.org/ R-2.5.1 Math library statistical
package] and its pbeta and dbeta functions.
[h4 Implementation]
In the following table /v1/ and /v2/ are the first and second
degrees of freedom parameters of the distribution, [lambda]
is the non-centrality parameter,
/x/ is the random variate, /p/ is the probability, and /q = 1-p/.
[table
[[Function][Implementation Notes]]
[[pdf][Implemented in terms of the non-central beta PDF using the relation:
[role serif_italic f(x;v1,v2;[lambda]) = (v1\/v2) / ((1+y)*(1+y)) * g(y\/(1+y);v1\/2,v2\/2;[lambda])]
where [role serif_italic g(x; a, b; [lambda])] is the non central beta PDF, and:
[role serif_italic y = x * v1 \/ v2]
]]
[[cdf][Using the relation:
[role serif_italic p = B[sub y](v1\/2, v2\/2; [lambda])]
where [role serif_italic B[sub x](a, b; [lambda])] is the noncentral beta distribution CDF and
[role serif_italic y = x * v1 \/ v2]
]]
[[cdf complement][Using the relation:
[role serif_italic q = 1 - B[sub y](v1\/2, v2\/2; [lambda])]
where [role serif_italic 1 - B[sub x](a, b; [lambda])] is the complement of the
noncentral beta distribution CDF and
[role serif_italic y = x * v1 \/ v2]
]]
[[quantile][Using the relation:
[role serif_italic x = (bx \/ (1-bx)) * (v1 \/ v2)]
where
[role serif_italic bx = Q[sub p][super -1](v1\/2, v2\/2; [lambda])]
and
[role serif_italic Q[sub p][super -1](v1\/2, v2\/2; [lambda])]
is the noncentral beta quantile.
]]
[[quantile
from the complement][
Using the relation:
[role serif_italic x = (bx \/ (1-bx)) * (v1 \/ v2)]
where
[role serif_italic bx = QC[sub q][super -1](v1\/2, v2\/2; [lambda])]
and
[role serif_italic QC[sub q][super -1](v1\/2, v2\/2; [lambda])]
is the noncentral beta quantile from the complement.]]
[[mean][[role serif_italic v2 * (v1 + l) \/ (v1 * (v2 - 2))]]]
[[mode][By numeric maximalisation of the PDF.]]
[[variance][Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.] ]]
[[skewness][Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.],
and to the [@http://reference.wolfram.com/mathematica/ref/NoncentralFRatioDistribution.html
Mathematica documentation] ]]
[[kurtosis and kurtosis excess]
[Refer to, [@http://mathworld.wolfram.com/NoncentralF-Distribution.html
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource.],
and to the [@http://reference.wolfram.com/mathematica/ref/NoncentralFRatioDistribution.html
Mathematica documentation] ]]
]
Some analytic properties of noncentral distributions
(particularly unimodality, and monotonicity of their modes)
are surveyed and summarized by:
Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.
[endsect] [/section:nc_f_dist]
[/ nc_f.qbk
Copyright 2008 John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
|