File: inverse_gaussian_example.cpp

package info (click to toggle)
boost1.88 1.88.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 576,932 kB
  • sloc: cpp: 4,149,234; xml: 136,789; ansic: 35,092; python: 33,910; asm: 5,698; sh: 4,604; ada: 1,681; makefile: 1,633; pascal: 1,139; perl: 1,124; sql: 640; yacc: 478; ruby: 271; java: 77; lisp: 24; csh: 6
file content (513 lines) | stat: -rw-r--r-- 19,455 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
// wald_example.cpp or inverse_gaussian_example.cpp

// Copyright Paul A. Bristow 2010.

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

// Example of using the Inverse Gaussian (or Inverse Normal) distribution.
// The Wald Distribution is


// Note that this file contains Quickbook mark-up as well as code
// and comments, don't change any of the special comment mark-ups!

//[inverse_gaussian_basic1
/*`
First we need some includes to access the normal distribution
(and some std output of course).
*/

#ifdef _MSC_VER
# pragma warning (disable : 4224)
# pragma warning (disable : 4189)
# pragma warning (disable : 4100)
# pragma warning (disable : 4224)
# pragma warning (disable : 4512)
# pragma warning (disable : 4702)
# pragma warning (disable : 4127)
#endif

//#define BOOST_MATH_INSTRUMENT

#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error

#include <boost/math/distributions/inverse_gaussian.hpp> // for inverse_gaussian_distribution
  using boost::math::inverse_gaussian; // typedef provides default type is double.
  using boost::math::inverse_gaussian_distribution; // for inverse gaussian distribution.

#include <boost/math/distributions/normal.hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.

#include <boost/array.hpp>
using std::array;

#include <iostream>
  using std::cout; using std::endl; using std::left; using std::showpoint; using std::noshowpoint;
#include <iomanip>
  using std::setw; using std::setprecision;
#include <limits>
  using std::numeric_limits;
#include <sstream>
  using std::string;
#include <string>
  using std::stringstream;

// const double tol = 3 * numeric_limits<double>::epsilon();

int main()
{
  cout << "Example: Inverse Gaussian Distribution."<< endl;

 try
  {

      double tolfeweps = numeric_limits<double>::epsilon();
      //cout << "Tolerance = " << tol << endl;

      int precision = 17; // traditional tables are only computed to much lower precision.
      cout.precision(17); // std::numeric_limits<double>::max_digits10; for 64-bit doubles.

     // Traditional tables and values.
     double step = 0.2; // in z
      double range = 4; // min and max z = -range to +range.
      // Construct a (standard) inverse gaussian distribution s
      inverse_gaussian w11(1, 1);
      // (default mean = units, and standard deviation = unity)
      cout << "(Standard) Inverse Gaussian distribution, mean = "<< w11.mean()
          << ", scale = " << w11.scale() << endl;

/*` First the probability distribution function (pdf).
 */
      cout << "Probability distribution function (pdf) values" << endl;
      cout << "  z " "      pdf " << endl;
      cout.precision(5);
      for (double z = (numeric_limits<double>::min)(); z < range + step; z += step)
      {
        cout << left << setprecision(3) << setw(6) << z << " "
          << setprecision(precision) << setw(12) << pdf(w11, z) << endl;
      }
      cout.precision(6); // default
 /*`And the area under the normal curve from -[infin] up to z,
      the cumulative distribution function (cdf).
*/

      // For a (default) inverse gaussian distribution.
      cout << "Integral (area under the curve) from 0 up to z (cdf) " << endl;
      cout << "  z " "      cdf " << endl;
      for (double z = (numeric_limits<double>::min)(); z < range + step; z += step)
      {
        cout << left << setprecision(3) << setw(6) << z << " "
          << setprecision(precision) << setw(12) << cdf(w11, z) << endl;
      }
      /*`giving the following table:
[pre
    z       pdf
  2.23e-308 -1.#IND
  0.2    0.90052111680384117
  0.4    1.0055127039453111
  0.6    0.75123750098955733
  0.8    0.54377310461643302
  1      0.3989422804014327
  1.2    0.29846949816803292
  1.4    0.2274579835638664
  1.6    0.17614566625628389
  1.8    0.13829083543591469
  2      0.10984782236693062
  2.2    0.088133964251182237
  2.4    0.071327382959107177
  2.6    0.058162562161661699
  2.8    0.047742223328567722
  3      0.039418357969819712
  3.2    0.032715223861241892
  3.4    0.027278388940958308
  3.6    0.022840312999395804
  3.8    0.019196657941016954
  4      0.016189699458236451
  Integral (area under the curve) from 0 up to z (cdf)
    z       cdf
  2.23e-308 0
  0.2    0.063753567519976254
  0.4    0.2706136704424541
  0.6    0.44638391340412931
  0.8    0.57472390962590925
  1      0.66810200122317065
  1.2    0.73724578422952536
  1.4    0.78944214237790356
  1.6    0.82953458108474554
  1.8    0.86079282968276671
  2      0.88547542598600626
  2.2    0.90517870624273966
  2.4    0.92105495653509362
  2.6    0.93395164268166786
  2.8    0.94450240360053817
  3      0.95318792074278835
  3.2    0.96037753019309191
  3.4    0.96635823989417369
  3.6    0.97135533107998406
  3.8    0.97554722413538364
  4      0.97907636417888622
]

/*`We can get the inverse, the quantile, percentile, percentage point, or critical value
for a probability for a few probability from the above table, for z = 0.4, 1.0, 2.0:
*/
      cout << quantile(w11, 0.27061367044245421 ) << endl; // 0.4
      cout << quantile(w11, 0.66810200122317065) << endl; // 1.0
      cout << quantile(w11, 0.88547542598600615) << endl; // 2.0
/*`turning the expect values apart from some 'computational noise' in the least significant bit or two.

[pre
  0.40000000000000008
  0.99999999999999967
  1.9999999999999973
]

*/

    //  cout << "pnorm01(-0.406053) " << pnorm01(-0.406053) << ", cdfn01(-0.406053) = " << cdf(n01, -0.406053) << endl;
   //cout << "pnorm01(0.5) = " << pnorm01(0.5) << endl; // R pnorm(0.5,0,1) = 0.6914625  == 0.69146246127401312
    // R qnorm(0.6914625,0,1) = 0.5

    // formatC(SuppDists::qinvGauss(0.3649755481729598, 1, 1), digits=17)  [1] "0.50000000969034875"



  // formatC(SuppDists::dinvGauss(0.01, 1, 1), digits=17) [1] "2.0811768202028392e-19"
  // formatC(SuppDists::pinvGauss(0.01, 1, 1), digits=17) [1] "4.122313403318778e-23"



  //cout << " qinvgauss(0.3649755481729598, 1, 1) = " << qinvgauss(0.3649755481729598, 1, 1) << endl;  // 0.5
 // cout << quantile(s, 0.66810200122317065) << endl; // expect 1, get 0.50517388467190727
  //cout << " qinvgauss(0.62502320258649202, 1, 1) = " << qinvgauss(0.62502320258649202, 1, 1) << endl; // 0.9
  //cout << " qinvgauss(0.063753567519976254, 1, 1) = " << qinvgauss(0.063753567519976254, 1, 1) << endl; // 0.2
  //cout << " qinvgauss(0.0040761113207110162, 1, 1) = " << qinvgauss(0.0040761113207110162, 1, 1) << endl; // 0.1

  //double x = 1.; // SuppDists::pinvGauss(0.4, 1,1) [1] 0.2706137
  //double c = pinvgauss(x, 1, 1); // 0.3649755481729598 ==   cdf(x, 1,1) 0.36497554817295974
  //cout << "  pinvgauss(x, 1, 1) = " << c << endl; //  pinvgauss(x, 1, 1) = 0.27061367044245421
  //double p = pdf(w11, x);
  //double c = cdf(w11, x); // cdf(1, 1, 1) = 0.66810200122317065
  //cout << "cdf(" << x << ", " << w11.mean() << ", "<< w11.scale() << ") = " << c << endl; // cdf(x, 1, 1) 0.27061367044245421
  //cout << "pdf(" << x << ", " << w11.mean() << ", "<< w11.scale() << ") = " << p << endl;
  //double q = quantile(w11, c);
  //cout << "quantile(w11, " << c <<  ") = " << q << endl;

  //cout  << "quantile(w11, 4.122313403318778e-23) = "<< quantile(w11, 4.122313403318778e-23) << endl; // quantile
  //cout << "quantile(w11, 4.8791443010851493e-219) = " << quantile(w11, 4.8791443010851493e-219) << endl; // quantile

  //double c1 = 1 - cdf(w11, x); //  1 - cdf(1, 1, 1) = 0.33189799877682935
  //cout << "1 - cdf(" << x << ", " << w11.mean() << ", " << w11.scale() << ") = " << c1 << endl; // cdf(x, 1, 1) 0.27061367044245421
  //double cc = cdf(complement(w11, x));
  //cout << "cdf(complement(" << x << ", " << w11.mean() << ", "<< w11.scale() << ")) = " << cc << endl; // cdf(x, 1, 1) 0.27061367044245421
  //// 1 - cdf(1000, 1, 1) = 0
  //// cdf(complement(1000, 1, 1)) = 4.8694344366900402e-222

  //cout << "quantile(w11, " << c << ") = "<< quantile(w11, c) << endl; // quantile = 0.99999999999999978 == x = 1
  //cout << "quantile(w11, " << c << ") = "<< quantile(w11, 1 - c) << endl; // quantile complement. quantile(w11, 0.66810200122317065) = 0.46336593652340152
//  cout << "quantile(complement(w11, " << c << ")) = " << quantile(complement(w11, c)) << endl; // quantile complement                = 0.46336593652340163

  // cdf(1, 1, 1) = 0.66810200122317065
  // 1 - cdf(1, 1, 1) = 0.33189799877682935
  // cdf(complement(1, 1, 1)) = 0.33189799877682929

  // quantile(w11, 0.66810200122317065) = 0.99999999999999978
  // 1 - quantile(w11, 0.66810200122317065) = 2.2204460492503131e-016
  // quantile(complement(w11, 0.33189799877682929)) = 0.99999999999999989


  // qinvgauss(c, 1, 1) = 0.3999999999999998
  // SuppDists::qinvGauss(0.270613670442454, 1, 1) [1] 0.4


  /*
  double qs = pinvgaussU(c, 1, 1); //
    cout << "qinvgaussU(c, 1, 1) = " << qs << endl; // qinvgaussU(c, 1, 1) = 0.86567442459240929
    // > z=q - exp(c) * p [1] 0.8656744 qs 0.86567442459240929 double
    // Is this the complement?
    cout << "qgamma(0.2, 0.5, 1) expect 0.0320923 = " << qgamma(0.2, 0.5, 1) << endl;
    // qgamma(0.2, 0.5, 1) expect 0.0320923 = 0.032092377333650807


  cout << "qinvgauss(pinvgauss(x, 1, 1) = " << q
  << ", diff = " << x - q << ", fraction = " << (x - q) /x << endl; // 0.5

 */   // > SuppDists::pinvGauss(0.02, 1,1)  [1] 4.139176e-12
  // > SuppDists::qinvGauss(4.139176e-12, 1,1) [1] 0.02000000


    // pinvGauss(1,1,1) = 0.668102  C++  == 0.66810200122317065
  // qinvGauss(0.668102,1,1) = 1

   //  SuppDists::pinvGauss(0.3,1,1) = 0.1657266
  // cout << "qinvGauss(0.0040761113207110162, 1, 1) = " << qinvgauss(0.0040761113207110162, 1, 1) << endl;
  //cout << "quantile(s, 0.1657266) = " << quantile(s, 0.1657266) << endl; // expect 1.

  //wald s12(2, 1);
  //cout << "qinvGauss(0.3, 2, 1) = " << qinvgauss(0.3, 2, 1) << endl; // SuppDists::qinvGauss(0.3,2,1) == 0.58288065635052944
  //// but actually get qinvGauss(0.3, 2, 1) = 0.58288064777632187
  //cout  << "cdf(s12, 0.3) = " << cdf(s12, 0.3) << endl; //  cdf(s12, 0.3) = 0.10895339868447573

 // using boost::math::wald;
  //cout.precision(6);

 /*
 double m = 1;
  double l = 1;
  double x = 0.1;
  //c = cdf(w, x);
  double p = pinvgauss(x, m, l);
  cout << "x = " << x << ",  pinvgauss(x, m, l) = " << p << endl; // R 0.4 0.2706137
  double qg = qgamma(1.- p, 0.5, 1.0, true, false);
  cout << " qgamma(1.- p, 0.5, 1.0, true, false) = " << qg << endl; // 0.606817
  double g = guess_whitmore(p, m, l);
  cout << "m = " << m << ", l = " << l << ",   x = " << x << ", guess = " << g
    << ", diff = " << (x - g) << endl;

  g = guess_wheeler(p, m, l);
   cout << "m = " << m << ", l = " << l << ",   x = " << x << ", guess = " << g
    << ", diff = " << (x - g) << endl;

   g = guess_bagshaw(p, m, l);
   cout << "m = " << m << ", l = " << l << ",   x = " << x << ", guess = " << g
    << ", diff = " << (x - g) << endl;

   // m = 1, l = 10,   x = 0.9, guess = 0.89792, diff = 0.00231075 so a better fit.
  // x = 0.9, guess = 0.887907
  // x = 0.5, guess = 0.474977
  // x = 0.4, guess = 0.369597
  // x = 0.2, guess = 0.155196

  // m = 1, l = 2,   x = 0.9, guess = 1.0312, diff = -0.145778
  // m = 1, l = 2,   x = 0.1, guess = 0.122201, diff = -0.222013
  //  m = 1, l = 2,   x = 0.2, guess = 0.299326, diff = -0.49663
  //   m = 1, l = 2,   x = 0.5, guess = 1.00437, diff = -1.00875
  // m = 1, l = 2,   x = 0.7, guess = 1.01517, diff = -0.450247

  double ls[7] = {0.1, 0.2, 0.5, 1., 2., 10, 100}; // scale values.
  double ms[10] = {0.001, 0.02, 0.1, 0.2, 0.5, 0.9, 1., 2., 10, 100};  // mean values.
   */

    cout.precision(6); // Restore to default.
  } // try
  catch(const std::exception& e)
  { // Always useful to include try & catch blocks because default policies
    // are to throw exceptions on arguments that cause errors like underflow, overflow.
    // Lacking try & catch blocks, the program will abort without a message below,
    // which may give some helpful clues as to the cause of the exception.
    std::cout <<
      "\n""Message from thrown exception was:\n   " << e.what() << std::endl;
  }
  return 0;
}  // int main()


/*

Output is:

inverse_gaussian_example.cpp
  inverse_gaussian_example.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Debug\inverse_gaussian_example.exe
  Example: Inverse Gaussian Distribution.
  (Standard) Inverse Gaussian distribution, mean = 1, scale = 1
  Probability distribution function (pdf) values
    z       pdf
  2.23e-308 -1.#IND
  0.2    0.90052111680384117
  0.4    1.0055127039453111
  0.6    0.75123750098955733
  0.8    0.54377310461643302
  1      0.3989422804014327
  1.2    0.29846949816803292
  1.4    0.2274579835638664
  1.6    0.17614566625628389
  1.8    0.13829083543591469
  2      0.10984782236693062
  2.2    0.088133964251182237
  2.4    0.071327382959107177
  2.6    0.058162562161661699
  2.8    0.047742223328567722
  3      0.039418357969819712
  3.2    0.032715223861241892
  3.4    0.027278388940958308
  3.6    0.022840312999395804
  3.8    0.019196657941016954
  4      0.016189699458236451
  Integral (area under the curve) from 0 up to z (cdf)
    z       cdf
  2.23e-308 0
  0.2    0.063753567519976254
  0.4    0.2706136704424541
  0.6    0.44638391340412931
  0.8    0.57472390962590925
  1      0.66810200122317065
  1.2    0.73724578422952536
  1.4    0.78944214237790356
  1.6    0.82953458108474554
  1.8    0.86079282968276671
  2      0.88547542598600626
  2.2    0.90517870624273966
  2.4    0.92105495653509362
  2.6    0.93395164268166786
  2.8    0.94450240360053817
  3      0.95318792074278835
  3.2    0.96037753019309191
  3.4    0.96635823989417369
  3.6    0.97135533107998406
  3.8    0.97554722413538364
  4      0.97907636417888622
  0.40000000000000008
  0.99999999999999967
  1.9999999999999973



> SuppDists::dinvGauss(2, 1, 1) [1] 0.1098478
> SuppDists::dinvGauss(0.4, 1, 1) [1] 1.005513
> SuppDists::dinvGauss(0.5, 1, 1) [1] 0.8787826
> SuppDists::dinvGauss(0.39, 1, 1) [1] 1.016559
> SuppDists::dinvGauss(0.38, 1, 1) [1] 1.027006
> SuppDists::dinvGauss(0.37, 1, 1) [1] 1.036748
> SuppDists::dinvGauss(0.36, 1, 1) [1] 1.045661
> SuppDists::dinvGauss(0.35, 1, 1) [1] 1.053611
> SuppDists::dinvGauss(0.3, 1, 1) [1] 1.072888
> SuppDists::dinvGauss(0.1, 1, 1) [1] 0.2197948
> SuppDists::dinvGauss(0.2, 1, 1) [1] 0.9005211
>
x = 0.3 [1, 1] 1.0728879234594337  // R SuppDists::dinvGauss(0.3, 1, 1) [1] 1.072888

x = 1   [1, 1] 0.3989422804014327


 0 "                NA"
 1 "0.3989422804014327"
 2 "0.10984782236693059"
 3 "0.039418357969819733"
 4 "0.016189699458236468"
 5 "0.007204168934430732"
 6 "0.003379893528659049"
 7 "0.0016462878258114036"
 8 "0.00082460931140859956"
 9 "0.00042207355643694234"
10 "0.00021979480031862676"


[1] "                NA"     " 0.690988298942671"     "0.11539974210409144"
 [4] "0.01799698883772935"    "0.0029555399206496469"  "0.00050863023587406587"
 [7] "9.0761842931362914e-05" "1.6655279133132795e-05" "3.1243174913715429e-06"
[10] "5.96530227727434e-07"   "1.1555606328299836e-07"


matC(dinvGauss(0:10, 1, 3), digits=17)  df = 3
[1] "                NA"     " 0.690988298942671"     "0.11539974210409144"
 [4] "0.01799698883772935"    "0.0029555399206496469"  "0.00050863023587406587"
 [7] "9.0761842931362914e-05" "1.6655279133132795e-05" "3.1243174913715429e-06"
[10] "5.96530227727434e-07"   "1.1555606328299836e-07"
$title
[1] "Inverse Gaussian"

$nu
[1] 1

$lambda
[1] 3

$Mean
[1] 1

$Median
[1] 0.8596309

$Mode
[1] 0.618034

$Variance
[1] 0.3333333

$SD
[1] 0.5773503

$ThirdCentralMoment
[1] 0.3333333

$FourthCentralMoment
[1] 0.8888889

$PearsonsSkewness...mean.minus.mode.div.SD
[1] 0.6615845

$Skewness...sqrtB1
[1] 1.732051

$Kurtosis...B2.minus.3
[1] 5

  Example: Wald distribution.
  (Standard) Wald distribution, mean = 1, scale = 1
  1 dx =      0.24890250442652451, x =      0.70924622051646713
  2 dx =    -0.038547954953794553, x =      0.46034371608994262
  3 dx =   -0.0011074090830291131, x =      0.49889167104373716
  4 dx = -9.1987259926368029e-007, x =      0.49999908012676625
  5 dx =  -6.346513344581067e-013, x =      0.49999999999936551
  dx = 6.3168242705156857e-017 at i = 6
   qinvgauss(0.3649755481729598, 1, 1) = 0.50000000000000011
  1 dx =       0.6719944578376621, x =       1.3735318786222666
  2 dx =     -0.16997432635769361, x =      0.70153742078460446
  3 dx =    -0.027865119206495724, x =      0.87151174714229807
  4 dx =  -0.00062283290009492603, x =      0.89937686634879377
  5 dx = -3.0075104108208687e-007, x =      0.89999969924888867
  6 dx = -7.0485322513588089e-014, x =      0.89999999999992975
  7 dx =   9.557331866250277e-016, x =      0.90000000000000024
  dx = 0 at i = 8
   qinvgauss(0.62502320258649202, 1, 1) = 0.89999999999999925
  1 dx =   -0.0052296256747447678, x =      0.19483508278446249
  2 dx =  6.4699046853900505e-005, x =      0.20006470845920726
  3 dx =  9.4123530465288137e-009, x =      0.20000000941235335
  4 dx =  2.7739513919147025e-016, x =      0.20000000000000032
  dx = 1.5410841066192808e-016 at i = 5
   qinvgauss(0.063753567519976254, 1, 1) = 0.20000000000000004
  1 dx =                       -1, x =     -0.46073286697416105
  2 dx =      0.47665501251497061, x =      0.53926713302583895
  3 dx =       -0.171105768635964, x =     0.062612120510868341
  4 dx =     0.091490360797512563, x =      0.23371788914683234
  5 dx =     0.029410311722649803, x =      0.14222752834931979
  6 dx =     0.010761845493592421, x =      0.11281721662666999
  7 dx =    0.0019864890597643035, x =      0.10205537113307757
  8 dx =  6.8800383732599561e-005, x =      0.10006888207331327
  9 dx =  8.1689466405590418e-008, x =      0.10000008168958067
  10 dx =   1.133634672475146e-013, x =      0.10000000000011428
  11 dx =  5.9588135045224526e-016, x =      0.10000000000000091
  12 dx =   3.433223674791152e-016, x =      0.10000000000000031
  dx = 9.0763384505974048e-017 at i = 13
   qinvgauss(0.0040761113207110162, 1, 1) = 0.099999999999999964


     wald_example.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Debug\wald_example.exe
  Example: Wald distribution.
  Tolerance = 6.66134e-016
  (Standard) Wald distribution, mean = 1, scale = 1
  cdf(x, 1,1) 4.1390252102096375e-012
  qinvgauss(pinvgauss(x, 1, 1) = 0.020116801973767886, diff = -0.00011680197376788548, fraction = -0.005840098688394274
  ____________________________________________________________
  wald 1, 1
  x =                     0.02, diff x - qinvgauss(cdf) = -0.00011680197376788548
  x =      0.10000000000000001, diff x - qinvgauss(cdf) = 8.7430063189231078e-016
  x =      0.20000000000000001, diff x - qinvgauss(cdf) = -1.1102230246251565e-016
  x =      0.29999999999999999, diff x - qinvgauss(cdf) = 0
  x =      0.40000000000000002, diff x - qinvgauss(cdf) = 2.2204460492503131e-016
  x =                      0.5, diff x - qinvgauss(cdf) = -1.1102230246251565e-016
  x =      0.59999999999999998, diff x - qinvgauss(cdf) = 1.1102230246251565e-016
  x =      0.80000000000000004, diff x - qinvgauss(cdf) = 1.1102230246251565e-016
  x =      0.90000000000000002, diff x - qinvgauss(cdf) = 0
  x =      0.98999999999999999, diff x - qinvgauss(cdf) = -1.1102230246251565e-016
  x =                    0.999, diff x - qinvgauss(cdf) = -1.1102230246251565e-016


*/