1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
// wald_example.cpp or inverse_gaussian_example.cpp
// Copyright Paul A. Bristow 2010.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Example of using the Inverse Gaussian (or Inverse Normal) distribution.
// The Wald Distribution is
// Note that this file contains Quickbook mark-up as well as code
// and comments, don't change any of the special comment mark-ups!
//[inverse_gaussian_basic1
/*`
First we need some includes to access the normal distribution
(and some std output of course).
*/
#ifdef _MSC_VER
# pragma warning (disable : 4224)
# pragma warning (disable : 4189)
# pragma warning (disable : 4100)
# pragma warning (disable : 4224)
# pragma warning (disable : 4512)
# pragma warning (disable : 4702)
# pragma warning (disable : 4127)
#endif
//#define BOOST_MATH_INSTRUMENT
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error
#include <boost/math/distributions/inverse_gaussian.hpp> // for inverse_gaussian_distribution
using boost::math::inverse_gaussian; // typedef provides default type is double.
using boost::math::inverse_gaussian_distribution; // for inverse gaussian distribution.
#include <boost/math/distributions/normal.hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.
#include <boost/array.hpp>
using std::array;
#include <iostream>
using std::cout; using std::endl; using std::left; using std::showpoint; using std::noshowpoint;
#include <iomanip>
using std::setw; using std::setprecision;
#include <limits>
using std::numeric_limits;
#include <sstream>
using std::string;
#include <string>
using std::stringstream;
// const double tol = 3 * numeric_limits<double>::epsilon();
int main()
{
cout << "Example: Inverse Gaussian Distribution."<< endl;
try
{
double tolfeweps = numeric_limits<double>::epsilon();
//cout << "Tolerance = " << tol << endl;
int precision = 17; // traditional tables are only computed to much lower precision.
cout.precision(17); // std::numeric_limits<double>::max_digits10; for 64-bit doubles.
// Traditional tables and values.
double step = 0.2; // in z
double range = 4; // min and max z = -range to +range.
// Construct a (standard) inverse gaussian distribution s
inverse_gaussian w11(1, 1);
// (default mean = units, and standard deviation = unity)
cout << "(Standard) Inverse Gaussian distribution, mean = "<< w11.mean()
<< ", scale = " << w11.scale() << endl;
/*` First the probability distribution function (pdf).
*/
cout << "Probability distribution function (pdf) values" << endl;
cout << " z " " pdf " << endl;
cout.precision(5);
for (double z = (numeric_limits<double>::min)(); z < range + step; z += step)
{
cout << left << setprecision(3) << setw(6) << z << " "
<< setprecision(precision) << setw(12) << pdf(w11, z) << endl;
}
cout.precision(6); // default
/*`And the area under the normal curve from -[infin] up to z,
the cumulative distribution function (cdf).
*/
// For a (default) inverse gaussian distribution.
cout << "Integral (area under the curve) from 0 up to z (cdf) " << endl;
cout << " z " " cdf " << endl;
for (double z = (numeric_limits<double>::min)(); z < range + step; z += step)
{
cout << left << setprecision(3) << setw(6) << z << " "
<< setprecision(precision) << setw(12) << cdf(w11, z) << endl;
}
/*`giving the following table:
[pre
z pdf
2.23e-308 -1.#IND
0.2 0.90052111680384117
0.4 1.0055127039453111
0.6 0.75123750098955733
0.8 0.54377310461643302
1 0.3989422804014327
1.2 0.29846949816803292
1.4 0.2274579835638664
1.6 0.17614566625628389
1.8 0.13829083543591469
2 0.10984782236693062
2.2 0.088133964251182237
2.4 0.071327382959107177
2.6 0.058162562161661699
2.8 0.047742223328567722
3 0.039418357969819712
3.2 0.032715223861241892
3.4 0.027278388940958308
3.6 0.022840312999395804
3.8 0.019196657941016954
4 0.016189699458236451
Integral (area under the curve) from 0 up to z (cdf)
z cdf
2.23e-308 0
0.2 0.063753567519976254
0.4 0.2706136704424541
0.6 0.44638391340412931
0.8 0.57472390962590925
1 0.66810200122317065
1.2 0.73724578422952536
1.4 0.78944214237790356
1.6 0.82953458108474554
1.8 0.86079282968276671
2 0.88547542598600626
2.2 0.90517870624273966
2.4 0.92105495653509362
2.6 0.93395164268166786
2.8 0.94450240360053817
3 0.95318792074278835
3.2 0.96037753019309191
3.4 0.96635823989417369
3.6 0.97135533107998406
3.8 0.97554722413538364
4 0.97907636417888622
]
/*`We can get the inverse, the quantile, percentile, percentage point, or critical value
for a probability for a few probability from the above table, for z = 0.4, 1.0, 2.0:
*/
cout << quantile(w11, 0.27061367044245421 ) << endl; // 0.4
cout << quantile(w11, 0.66810200122317065) << endl; // 1.0
cout << quantile(w11, 0.88547542598600615) << endl; // 2.0
/*`turning the expect values apart from some 'computational noise' in the least significant bit or two.
[pre
0.40000000000000008
0.99999999999999967
1.9999999999999973
]
*/
// cout << "pnorm01(-0.406053) " << pnorm01(-0.406053) << ", cdfn01(-0.406053) = " << cdf(n01, -0.406053) << endl;
//cout << "pnorm01(0.5) = " << pnorm01(0.5) << endl; // R pnorm(0.5,0,1) = 0.6914625 == 0.69146246127401312
// R qnorm(0.6914625,0,1) = 0.5
// formatC(SuppDists::qinvGauss(0.3649755481729598, 1, 1), digits=17) [1] "0.50000000969034875"
// formatC(SuppDists::dinvGauss(0.01, 1, 1), digits=17) [1] "2.0811768202028392e-19"
// formatC(SuppDists::pinvGauss(0.01, 1, 1), digits=17) [1] "4.122313403318778e-23"
//cout << " qinvgauss(0.3649755481729598, 1, 1) = " << qinvgauss(0.3649755481729598, 1, 1) << endl; // 0.5
// cout << quantile(s, 0.66810200122317065) << endl; // expect 1, get 0.50517388467190727
//cout << " qinvgauss(0.62502320258649202, 1, 1) = " << qinvgauss(0.62502320258649202, 1, 1) << endl; // 0.9
//cout << " qinvgauss(0.063753567519976254, 1, 1) = " << qinvgauss(0.063753567519976254, 1, 1) << endl; // 0.2
//cout << " qinvgauss(0.0040761113207110162, 1, 1) = " << qinvgauss(0.0040761113207110162, 1, 1) << endl; // 0.1
//double x = 1.; // SuppDists::pinvGauss(0.4, 1,1) [1] 0.2706137
//double c = pinvgauss(x, 1, 1); // 0.3649755481729598 == cdf(x, 1,1) 0.36497554817295974
//cout << " pinvgauss(x, 1, 1) = " << c << endl; // pinvgauss(x, 1, 1) = 0.27061367044245421
//double p = pdf(w11, x);
//double c = cdf(w11, x); // cdf(1, 1, 1) = 0.66810200122317065
//cout << "cdf(" << x << ", " << w11.mean() << ", "<< w11.scale() << ") = " << c << endl; // cdf(x, 1, 1) 0.27061367044245421
//cout << "pdf(" << x << ", " << w11.mean() << ", "<< w11.scale() << ") = " << p << endl;
//double q = quantile(w11, c);
//cout << "quantile(w11, " << c << ") = " << q << endl;
//cout << "quantile(w11, 4.122313403318778e-23) = "<< quantile(w11, 4.122313403318778e-23) << endl; // quantile
//cout << "quantile(w11, 4.8791443010851493e-219) = " << quantile(w11, 4.8791443010851493e-219) << endl; // quantile
//double c1 = 1 - cdf(w11, x); // 1 - cdf(1, 1, 1) = 0.33189799877682935
//cout << "1 - cdf(" << x << ", " << w11.mean() << ", " << w11.scale() << ") = " << c1 << endl; // cdf(x, 1, 1) 0.27061367044245421
//double cc = cdf(complement(w11, x));
//cout << "cdf(complement(" << x << ", " << w11.mean() << ", "<< w11.scale() << ")) = " << cc << endl; // cdf(x, 1, 1) 0.27061367044245421
//// 1 - cdf(1000, 1, 1) = 0
//// cdf(complement(1000, 1, 1)) = 4.8694344366900402e-222
//cout << "quantile(w11, " << c << ") = "<< quantile(w11, c) << endl; // quantile = 0.99999999999999978 == x = 1
//cout << "quantile(w11, " << c << ") = "<< quantile(w11, 1 - c) << endl; // quantile complement. quantile(w11, 0.66810200122317065) = 0.46336593652340152
// cout << "quantile(complement(w11, " << c << ")) = " << quantile(complement(w11, c)) << endl; // quantile complement = 0.46336593652340163
// cdf(1, 1, 1) = 0.66810200122317065
// 1 - cdf(1, 1, 1) = 0.33189799877682935
// cdf(complement(1, 1, 1)) = 0.33189799877682929
// quantile(w11, 0.66810200122317065) = 0.99999999999999978
// 1 - quantile(w11, 0.66810200122317065) = 2.2204460492503131e-016
// quantile(complement(w11, 0.33189799877682929)) = 0.99999999999999989
// qinvgauss(c, 1, 1) = 0.3999999999999998
// SuppDists::qinvGauss(0.270613670442454, 1, 1) [1] 0.4
/*
double qs = pinvgaussU(c, 1, 1); //
cout << "qinvgaussU(c, 1, 1) = " << qs << endl; // qinvgaussU(c, 1, 1) = 0.86567442459240929
// > z=q - exp(c) * p [1] 0.8656744 qs 0.86567442459240929 double
// Is this the complement?
cout << "qgamma(0.2, 0.5, 1) expect 0.0320923 = " << qgamma(0.2, 0.5, 1) << endl;
// qgamma(0.2, 0.5, 1) expect 0.0320923 = 0.032092377333650807
cout << "qinvgauss(pinvgauss(x, 1, 1) = " << q
<< ", diff = " << x - q << ", fraction = " << (x - q) /x << endl; // 0.5
*/ // > SuppDists::pinvGauss(0.02, 1,1) [1] 4.139176e-12
// > SuppDists::qinvGauss(4.139176e-12, 1,1) [1] 0.02000000
// pinvGauss(1,1,1) = 0.668102 C++ == 0.66810200122317065
// qinvGauss(0.668102,1,1) = 1
// SuppDists::pinvGauss(0.3,1,1) = 0.1657266
// cout << "qinvGauss(0.0040761113207110162, 1, 1) = " << qinvgauss(0.0040761113207110162, 1, 1) << endl;
//cout << "quantile(s, 0.1657266) = " << quantile(s, 0.1657266) << endl; // expect 1.
//wald s12(2, 1);
//cout << "qinvGauss(0.3, 2, 1) = " << qinvgauss(0.3, 2, 1) << endl; // SuppDists::qinvGauss(0.3,2,1) == 0.58288065635052944
//// but actually get qinvGauss(0.3, 2, 1) = 0.58288064777632187
//cout << "cdf(s12, 0.3) = " << cdf(s12, 0.3) << endl; // cdf(s12, 0.3) = 0.10895339868447573
// using boost::math::wald;
//cout.precision(6);
/*
double m = 1;
double l = 1;
double x = 0.1;
//c = cdf(w, x);
double p = pinvgauss(x, m, l);
cout << "x = " << x << ", pinvgauss(x, m, l) = " << p << endl; // R 0.4 0.2706137
double qg = qgamma(1.- p, 0.5, 1.0, true, false);
cout << " qgamma(1.- p, 0.5, 1.0, true, false) = " << qg << endl; // 0.606817
double g = guess_whitmore(p, m, l);
cout << "m = " << m << ", l = " << l << ", x = " << x << ", guess = " << g
<< ", diff = " << (x - g) << endl;
g = guess_wheeler(p, m, l);
cout << "m = " << m << ", l = " << l << ", x = " << x << ", guess = " << g
<< ", diff = " << (x - g) << endl;
g = guess_bagshaw(p, m, l);
cout << "m = " << m << ", l = " << l << ", x = " << x << ", guess = " << g
<< ", diff = " << (x - g) << endl;
// m = 1, l = 10, x = 0.9, guess = 0.89792, diff = 0.00231075 so a better fit.
// x = 0.9, guess = 0.887907
// x = 0.5, guess = 0.474977
// x = 0.4, guess = 0.369597
// x = 0.2, guess = 0.155196
// m = 1, l = 2, x = 0.9, guess = 1.0312, diff = -0.145778
// m = 1, l = 2, x = 0.1, guess = 0.122201, diff = -0.222013
// m = 1, l = 2, x = 0.2, guess = 0.299326, diff = -0.49663
// m = 1, l = 2, x = 0.5, guess = 1.00437, diff = -1.00875
// m = 1, l = 2, x = 0.7, guess = 1.01517, diff = -0.450247
double ls[7] = {0.1, 0.2, 0.5, 1., 2., 10, 100}; // scale values.
double ms[10] = {0.001, 0.02, 0.1, 0.2, 0.5, 0.9, 1., 2., 10, 100}; // mean values.
*/
cout.precision(6); // Restore to default.
} // try
catch(const std::exception& e)
{ // Always useful to include try & catch blocks because default policies
// are to throw exceptions on arguments that cause errors like underflow, overflow.
// Lacking try & catch blocks, the program will abort without a message below,
// which may give some helpful clues as to the cause of the exception.
std::cout <<
"\n""Message from thrown exception was:\n " << e.what() << std::endl;
}
return 0;
} // int main()
/*
Output is:
inverse_gaussian_example.cpp
inverse_gaussian_example.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Debug\inverse_gaussian_example.exe
Example: Inverse Gaussian Distribution.
(Standard) Inverse Gaussian distribution, mean = 1, scale = 1
Probability distribution function (pdf) values
z pdf
2.23e-308 -1.#IND
0.2 0.90052111680384117
0.4 1.0055127039453111
0.6 0.75123750098955733
0.8 0.54377310461643302
1 0.3989422804014327
1.2 0.29846949816803292
1.4 0.2274579835638664
1.6 0.17614566625628389
1.8 0.13829083543591469
2 0.10984782236693062
2.2 0.088133964251182237
2.4 0.071327382959107177
2.6 0.058162562161661699
2.8 0.047742223328567722
3 0.039418357969819712
3.2 0.032715223861241892
3.4 0.027278388940958308
3.6 0.022840312999395804
3.8 0.019196657941016954
4 0.016189699458236451
Integral (area under the curve) from 0 up to z (cdf)
z cdf
2.23e-308 0
0.2 0.063753567519976254
0.4 0.2706136704424541
0.6 0.44638391340412931
0.8 0.57472390962590925
1 0.66810200122317065
1.2 0.73724578422952536
1.4 0.78944214237790356
1.6 0.82953458108474554
1.8 0.86079282968276671
2 0.88547542598600626
2.2 0.90517870624273966
2.4 0.92105495653509362
2.6 0.93395164268166786
2.8 0.94450240360053817
3 0.95318792074278835
3.2 0.96037753019309191
3.4 0.96635823989417369
3.6 0.97135533107998406
3.8 0.97554722413538364
4 0.97907636417888622
0.40000000000000008
0.99999999999999967
1.9999999999999973
> SuppDists::dinvGauss(2, 1, 1) [1] 0.1098478
> SuppDists::dinvGauss(0.4, 1, 1) [1] 1.005513
> SuppDists::dinvGauss(0.5, 1, 1) [1] 0.8787826
> SuppDists::dinvGauss(0.39, 1, 1) [1] 1.016559
> SuppDists::dinvGauss(0.38, 1, 1) [1] 1.027006
> SuppDists::dinvGauss(0.37, 1, 1) [1] 1.036748
> SuppDists::dinvGauss(0.36, 1, 1) [1] 1.045661
> SuppDists::dinvGauss(0.35, 1, 1) [1] 1.053611
> SuppDists::dinvGauss(0.3, 1, 1) [1] 1.072888
> SuppDists::dinvGauss(0.1, 1, 1) [1] 0.2197948
> SuppDists::dinvGauss(0.2, 1, 1) [1] 0.9005211
>
x = 0.3 [1, 1] 1.0728879234594337 // R SuppDists::dinvGauss(0.3, 1, 1) [1] 1.072888
x = 1 [1, 1] 0.3989422804014327
0 " NA"
1 "0.3989422804014327"
2 "0.10984782236693059"
3 "0.039418357969819733"
4 "0.016189699458236468"
5 "0.007204168934430732"
6 "0.003379893528659049"
7 "0.0016462878258114036"
8 "0.00082460931140859956"
9 "0.00042207355643694234"
10 "0.00021979480031862676"
[1] " NA" " 0.690988298942671" "0.11539974210409144"
[4] "0.01799698883772935" "0.0029555399206496469" "0.00050863023587406587"
[7] "9.0761842931362914e-05" "1.6655279133132795e-05" "3.1243174913715429e-06"
[10] "5.96530227727434e-07" "1.1555606328299836e-07"
matC(dinvGauss(0:10, 1, 3), digits=17) df = 3
[1] " NA" " 0.690988298942671" "0.11539974210409144"
[4] "0.01799698883772935" "0.0029555399206496469" "0.00050863023587406587"
[7] "9.0761842931362914e-05" "1.6655279133132795e-05" "3.1243174913715429e-06"
[10] "5.96530227727434e-07" "1.1555606328299836e-07"
$title
[1] "Inverse Gaussian"
$nu
[1] 1
$lambda
[1] 3
$Mean
[1] 1
$Median
[1] 0.8596309
$Mode
[1] 0.618034
$Variance
[1] 0.3333333
$SD
[1] 0.5773503
$ThirdCentralMoment
[1] 0.3333333
$FourthCentralMoment
[1] 0.8888889
$PearsonsSkewness...mean.minus.mode.div.SD
[1] 0.6615845
$Skewness...sqrtB1
[1] 1.732051
$Kurtosis...B2.minus.3
[1] 5
Example: Wald distribution.
(Standard) Wald distribution, mean = 1, scale = 1
1 dx = 0.24890250442652451, x = 0.70924622051646713
2 dx = -0.038547954953794553, x = 0.46034371608994262
3 dx = -0.0011074090830291131, x = 0.49889167104373716
4 dx = -9.1987259926368029e-007, x = 0.49999908012676625
5 dx = -6.346513344581067e-013, x = 0.49999999999936551
dx = 6.3168242705156857e-017 at i = 6
qinvgauss(0.3649755481729598, 1, 1) = 0.50000000000000011
1 dx = 0.6719944578376621, x = 1.3735318786222666
2 dx = -0.16997432635769361, x = 0.70153742078460446
3 dx = -0.027865119206495724, x = 0.87151174714229807
4 dx = -0.00062283290009492603, x = 0.89937686634879377
5 dx = -3.0075104108208687e-007, x = 0.89999969924888867
6 dx = -7.0485322513588089e-014, x = 0.89999999999992975
7 dx = 9.557331866250277e-016, x = 0.90000000000000024
dx = 0 at i = 8
qinvgauss(0.62502320258649202, 1, 1) = 0.89999999999999925
1 dx = -0.0052296256747447678, x = 0.19483508278446249
2 dx = 6.4699046853900505e-005, x = 0.20006470845920726
3 dx = 9.4123530465288137e-009, x = 0.20000000941235335
4 dx = 2.7739513919147025e-016, x = 0.20000000000000032
dx = 1.5410841066192808e-016 at i = 5
qinvgauss(0.063753567519976254, 1, 1) = 0.20000000000000004
1 dx = -1, x = -0.46073286697416105
2 dx = 0.47665501251497061, x = 0.53926713302583895
3 dx = -0.171105768635964, x = 0.062612120510868341
4 dx = 0.091490360797512563, x = 0.23371788914683234
5 dx = 0.029410311722649803, x = 0.14222752834931979
6 dx = 0.010761845493592421, x = 0.11281721662666999
7 dx = 0.0019864890597643035, x = 0.10205537113307757
8 dx = 6.8800383732599561e-005, x = 0.10006888207331327
9 dx = 8.1689466405590418e-008, x = 0.10000008168958067
10 dx = 1.133634672475146e-013, x = 0.10000000000011428
11 dx = 5.9588135045224526e-016, x = 0.10000000000000091
12 dx = 3.433223674791152e-016, x = 0.10000000000000031
dx = 9.0763384505974048e-017 at i = 13
qinvgauss(0.0040761113207110162, 1, 1) = 0.099999999999999964
wald_example.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Debug\wald_example.exe
Example: Wald distribution.
Tolerance = 6.66134e-016
(Standard) Wald distribution, mean = 1, scale = 1
cdf(x, 1,1) 4.1390252102096375e-012
qinvgauss(pinvgauss(x, 1, 1) = 0.020116801973767886, diff = -0.00011680197376788548, fraction = -0.005840098688394274
____________________________________________________________
wald 1, 1
x = 0.02, diff x - qinvgauss(cdf) = -0.00011680197376788548
x = 0.10000000000000001, diff x - qinvgauss(cdf) = 8.7430063189231078e-016
x = 0.20000000000000001, diff x - qinvgauss(cdf) = -1.1102230246251565e-016
x = 0.29999999999999999, diff x - qinvgauss(cdf) = 0
x = 0.40000000000000002, diff x - qinvgauss(cdf) = 2.2204460492503131e-016
x = 0.5, diff x - qinvgauss(cdf) = -1.1102230246251565e-016
x = 0.59999999999999998, diff x - qinvgauss(cdf) = 1.1102230246251565e-016
x = 0.80000000000000004, diff x - qinvgauss(cdf) = 1.1102230246251565e-016
x = 0.90000000000000002, diff x - qinvgauss(cdf) = 0
x = 0.98999999999999999, diff x - qinvgauss(cdf) = -1.1102230246251565e-016
x = 0.999, diff x - qinvgauss(cdf) = -1.1102230246251565e-016
*/
|