1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
|
// Copyright Paul A. Bristow 2015
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Comparison of finding roots using TOMS748, Newton-Raphson, Schroder & Halley algorithms.
// Note that this file contains Quickbook mark-up as well as code
// and comments, don't change any of the special comment mark-ups!
// root_finding_algorithms.cpp
#include <boost/cstdlib.hpp>
#include <boost/config.hpp>
#include <boost/array.hpp>
#include "table_type.hpp"
// Copy of i:\modular-boost\libs\math\test\table_type.hpp
// #include "handle_test_result.hpp"
// Copy of i:\modular - boost\libs\math\test\handle_test_result.hpp
#include <boost/math/tools/roots.hpp>
//using boost::math::policies::policy;
//using boost::math::tools::newton_raphson_iterate;
//using boost::math::tools::halley_iterate; //
//using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
//using boost::math::tools::bracket_and_solve_root;
//using boost::math::tools::toms748_solve;
//using boost::math::tools::schroder_iterate;
#include <boost/math/special_functions/next.hpp> // For float_distance.
#include <tuple> // for tuple and make_tuple.
#include <boost/math/special_functions/cbrt.hpp> // For boost::math::cbrt.
#include <boost/multiprecision/cpp_bin_float.hpp> // is binary.
//#include <boost/multiprecision/cpp_dec_float.hpp> // is decimal.
using boost::multiprecision::cpp_bin_float_100;
using boost::multiprecision::cpp_bin_float_50;
#include <boost/timer/timer.hpp>
#include <boost/system/error_code.hpp>
#include <boost/multiprecision/cpp_bin_float/io.hpp>
#include <boost/preprocessor/stringize.hpp>
// STL
#include <iostream>
#include <iomanip>
#include <string>
#include <vector>
#include <limits>
#include <fstream> // std::ofstream
#include <cmath>
#include <typeinfo> // for type name using typid(thingy).name();
#include <type_traits>
#ifndef BOOST_ROOT
# define BOOST_ROOT i:/modular-boost/
#endif
// Need to find this
#ifdef __FILE__
std::string sourcefilename = __FILE__;
#endif
std::string chop_last(std::string s)
{
std::string::size_type pos = s.find_last_of("\\/");
if(pos != std::string::npos)
s.erase(pos);
else if(s.empty())
abort();
else
s.erase();
return s;
}
std::string make_root()
{
std::string result;
if(sourcefilename.find_first_of(":") != std::string::npos)
{
result = chop_last(sourcefilename); // lose filename part
result = chop_last(result); // lose /example/
result = chop_last(result); // lose /math/
result = chop_last(result); // lose /libs/
}
else
{
result = chop_last(sourcefilename); // lose filename part
if(result.empty())
result = ".";
result += "/../../..";
}
return result;
}
std::string short_file_name(std::string s)
{
std::string::size_type pos = s.find_last_of("\\/");
if(pos != std::string::npos)
s.erase(0, pos + 1);
return s;
}
std::string boost_root = make_root();
#ifdef _MSC_VER
std::string filename = boost_root.append("/libs/math/doc/roots/root_comparison_tables_msvc.qbk");
#else // assume GCC
std::string filename = boost_root.append("/libs/math/doc/roots/root_comparison_tables_gcc.qbk");
#endif
std::ofstream fout (filename.c_str(), std::ios_base::out);
//std::array<std::string, 6> float_type_names =
//{
// "float", "double", "long double", "cpp_bin_128", "cpp_dec_50", "cpp_dec_100"
//};
std::vector<std::string> algo_names =
{
"cbrt", "TOMS748", "Newton", "Halley", "Schr'''ö'''der"
};
std::vector<int> max_digits10s;
std::vector<std::string> typenames; // Full computer generated type name.
std::vector<std::string> names; // short name.
uintmax_t iters; // Global as iterations is not returned by rooting function.
const int count = 1000000; // Number of iterations to average.
struct root_info
{ // for a floating-point type, float, double ...
std::size_t max_digits10; // for type.
std::string full_typename; // for type from type_id.name().
std::string short_typename; // for type "float", "double", "cpp_bin_float_50" ....
std::size_t bin_digits; // binary in floating-point type numeric_limits<T>::digits;
int get_digits; // fraction of maximum possible accuracy required.
// = digits * digits_accuracy
// Vector of values for each algorithm, std::cbrt, boost::math::cbrt, TOMS748, Newton, Halley.
//std::vector< std::int_least64_t> times; converted to int.
std::vector<int> times;
//std::int_least64_t min_time = std::numeric_limits<std::int_least64_t>::max(); // Used to normalize times (as int).
std::vector<double> normed_times;
std::int_least64_t min_time = (std::numeric_limits<std::int_least64_t>::max)(); // Used to normalize times.
std::vector<uintmax_t> iterations;
std::vector<long int> distances;
std::vector<cpp_bin_float_100> full_results;
}; // struct root_info
std::vector<root_info> root_infos; // One element for each type used.
int type_no = -1; // float = 0, double = 1, ... indexing root_infos.
inline std::string build_test_name(const char* type_name, const char* test_name)
{
std::string result(BOOST_COMPILER);
result += "|";
result += BOOST_STDLIB;
result += "|";
result += BOOST_PLATFORM;
result += "|";
result += type_name;
result += "|";
result += test_name;
#if defined(_DEBUG ) || !defined(NDEBUG)
result += "|";
result += " debug";
#else
result += "|";
result += " release";
#endif
result += "|";
return result;
}
// No derivatives - using TOMS748 internally.
template <class T>
struct cbrt_functor_noderiv
{ // cube root of x using only function - no derivatives.
cbrt_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of)
{ // Constructor just stores value a to find root of.
}
T operator()(T const& x)
{
T fx = x*x*x - a; // Difference (estimate x^3 - a).
return fx;
}
private:
T a; // to be 'cube_rooted'.
}; // template <class T> struct cbrt_functor_noderiv
template <class T>
T cbrt_noderiv(T x)
{ // return cube root of x using bracket_and_solve (using NO derivatives).
using namespace std; // Help ADL of std functions.
using namespace boost::math::tools; // For bracket_and_solve_root.
// Maybe guess should be double, or use enable_if to avoid warning about conversion double to float here?
T guess;
if (std::is_fundamental<T>::value)
{
int exponent;
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
guess = ldexp((T)1., exponent / 3); // Rough guess is to divide the exponent by three.
}
else
{ // (boost::is_class<T>)
double dx = static_cast<double>(x);
guess = boost::math::cbrt<T>(dx); // Get guess using double.
}
T factor = 2; // How big steps to take when searching.
const std::uintmax_t maxit = 50; // Limit to maximum iterations.
std::uintmax_t it = maxit; // Initially our chosen max iterations, but updated with actual.
bool is_rising = true; // So if result if guess^3 is too low, then try increasing guess.
// Some fraction of digits is used to control how accurate to try to make the result.
int get_digits = static_cast<int>(std::numeric_limits<T>::digits - 2);
eps_tolerance<T> tol(get_digits); // Set the tolerance.
std::pair<T, T> r =
bracket_and_solve_root(cbrt_functor_noderiv<T>(x), guess, factor, is_rising, tol, it);
iters = it;
T result = r.first + (r.second - r.first) / 2; // Midway between brackets.
return result;
} // template <class T> T cbrt_noderiv(T x)
// Using 1st derivative only Newton-Raphson
template <class T>
struct cbrt_functor_deriv
{ // Functor also returning 1st derivative.
cbrt_functor_deriv(T const& to_find_root_of) : a(to_find_root_of)
{ // Constructor stores value a to find root of,
// for example: calling cbrt_functor_deriv<T>(x) to use to get cube root of x.
}
std::pair<T, T> operator()(T const& x)
{ // Return both f(x) and f'(x).
T fx = x*x*x - a; // Difference (estimate x^3 - value).
T dx = 3 * x*x; // 1st derivative = 3x^2.
return std::make_pair(fx, dx); // 'return' both fx and dx.
}
private:
T a; // to be 'cube_rooted'.
};
template <class T>
T cbrt_deriv(T x)
{ // return cube root of x using 1st derivative and Newton_Raphson.
using namespace boost::math::tools;
int exponent;
T guess;
if(std::is_fundamental<T>::value)
{
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
guess = ldexp(static_cast<T>(1), exponent / 3); // Rough guess is to divide the exponent by three.
}
else
guess = boost::math::cbrt(static_cast<double>(x));
T min = guess / 2; // Minimum possible value is half our guess.
T max = 2 * guess; // Maximum possible value is twice our guess.
int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.6);
const std::uintmax_t maxit = 20;
std::uintmax_t it = maxit;
T result = newton_raphson_iterate(cbrt_functor_deriv<T>(x), guess, min, max, get_digits, it);
iters = it;
return result;
}
// Using 1st and 2nd derivatives with Halley algorithm.
template <class T>
struct cbrt_functor_2deriv
{ // Functor returning both 1st and 2nd derivatives.
cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
{ // Constructor stores value a to find root of, for example:
// calling cbrt_functor_2deriv<T>(x) to get cube root of x,
}
std::tuple<T, T, T> operator()(T const& x)
{ // Return both f(x) and f'(x) and f''(x).
T fx = x*x*x - a; // Difference (estimate x^3 - value).
T dx = 3 * x*x; // 1st derivative = 3x^2.
T d2x = 6 * x; // 2nd derivative = 6x.
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
}
private:
T a; // to be 'cube_rooted'.
};
template <class T>
T cbrt_2deriv(T x)
{ // return cube root of x using 1st and 2nd derivatives and Halley.
//using namespace std; // Help ADL of std functions.
using namespace boost::math::tools;
int exponent;
T guess;
if(std::is_fundamental<T>::value)
{
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
guess = ldexp(static_cast<T>(1), exponent / 3); // Rough guess is to divide the exponent by three.
}
else
guess = boost::math::cbrt(static_cast<double>(x));
T min = guess / 2; // Minimum possible value is half our guess.
T max = 2 * guess; // Maximum possible value is twice our guess.
// digits used to control how accurate to try to make the result.
int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
std::uintmax_t maxit = 20;
std::uintmax_t it = maxit;
T result = halley_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, it);
iters = it;
return result;
}
// Using 1st and 2nd derivatives using Schroder algorithm.
template <class T>
T cbrt_2deriv_s(T x)
{ // return cube root of x using 1st and 2nd derivatives and Schroder algorithm.
//using namespace std; // Help ADL of std functions.
using namespace boost::math::tools;
int exponent;
T guess;
if(std::is_fundamental<T>::value)
{
frexp(x, &exponent); // Get exponent of z (ignore mantissa).
guess = ldexp(static_cast<T>(1), exponent / 3); // Rough guess is to divide the exponent by three.
}
else
guess = boost::math::cbrt(static_cast<double>(x));
T min = guess / 2; // Minimum possible value is half our guess.
T max = 2 * guess; // Maximum possible value is twice our guess.
// digits used to control how accurate to try to make the result.
int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
const std::uintmax_t maxit = 20;
std::uintmax_t it = maxit;
T result = schroder_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, it);
iters = it;
return result;
} // template <class T> T cbrt_2deriv_s(T x)
template <typename T>
int test_root(cpp_bin_float_100 big_value, cpp_bin_float_100 answer, const char* type_name)
{
//T value = 28.; // integer (exactly representable as floating-point)
// whose cube root is *not* exactly representable.
// Wolfram Alpha command N[28 ^ (1 / 3), 100] computes cube root to 100 decimal digits.
// 3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895
std::size_t max_digits = 2 + std::numeric_limits<T>::digits * 3010 / 10000;
// For new versions use max_digits10
// std::cout.precision(std::numeric_limits<T>::max_digits10);
std::cout.precision(max_digits);
std::cout << std::showpoint << std::endl; // Trailing zeros too.
root_infos.push_back(root_info());
type_no++; // Another type.
root_infos[type_no].max_digits10 = max_digits;
root_infos[type_no].full_typename = typeid(T).name(); // Full typename.
root_infos[type_no].short_typename = type_name; // Short typename.
root_infos[type_no].bin_digits = std::numeric_limits<T>::digits;
root_infos[type_no].get_digits = std::numeric_limits<T>::digits;
T to_root = static_cast<T>(big_value);
T result; // root
T ans = static_cast<T>(answer);
int algo = 0; // Count of algorithms used.
using boost::timer::nanosecond_type;
using boost::timer::cpu_times;
using boost::timer::cpu_timer;
cpu_times now; // Holds wall, user and system times.
T sum = 0;
// std::cbrt is much the fastest, but not useful for this comparison because it only handles fundamental types.
// Using enable_if allows us to avoid a compile fail with multiprecision types, but still distorts the results too much.
//{
// algorithm_names.push_back("std::cbrt");
// cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
// ti.start();
// for (long i = 0; i < count; ++i)
// {
// stdcbrt(big_value);
// }
// now = ti.elapsed();
// int time = static_cast<int>(now.user / count);
// root_infos[type_no].times.push_back(time); // CPU time taken per root.
// if (time < root_infos[type_no].min_time)
// {
// root_infos[type_no].min_time = time;
// }
// ti.stop();
// long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
// root_infos[type_no].distances.push_back(distance);
// root_infos[type_no].iterations.push_back(0); // Not known.
// root_infos[type_no].full_results.push_back(result);
// algo++;
//}
//{
// //algorithm_names.push_back("boost::math::cbrt"); // .
// cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
// ti.start();
// for (long i = 0; i < count; ++i)
// {
// result = boost::math::cbrt(to_root); //
// }
// now = ti.elapsed();
// int time = static_cast<int>(now.user / count);
// root_infos[type_no].times.push_back(time); // CPU time taken.
// ti.stop();
// if (time < root_infos[type_no].min_time)
// {
// root_infos[type_no].min_time = time;
// }
// long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
// root_infos[type_no].distances.push_back(distance);
// root_infos[type_no].iterations.push_back(0); // Iterations not knowable.
// root_infos[type_no].full_results.push_back(result);
//}
{
//algorithm_names.push_back("boost::math::cbrt"); // .
result = 0;
cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
ti.start();
for (long i = 0; i < count; ++i)
{
result = boost::math::cbrt(to_root); //
sum += result;
}
now = ti.elapsed();
long time = static_cast<long>(now.user/1000); // convert nanoseconds to microseconds (assuming this is resolution).
root_infos[type_no].times.push_back(time); // CPU time taken.
ti.stop();
if (time < root_infos[type_no].min_time)
{
root_infos[type_no].min_time = time;
}
long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
root_infos[type_no].distances.push_back(distance);
root_infos[type_no].iterations.push_back(0); // Iterations not knowable.
root_infos[type_no].full_results.push_back(result);
}
{
//algorithm_names.push_back("TOMS748"); //
cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
ti.start();
for (long i = 0; i < count; ++i)
{
result = cbrt_noderiv<T>(to_root); //
sum += result;
}
now = ti.elapsed();
// int time = static_cast<int>(now.user / count);
long time = static_cast<long>(now.user/1000);
root_infos[type_no].times.push_back(time); // CPU time taken.
if (time < root_infos[type_no].min_time)
{
root_infos[type_no].min_time = time;
}
ti.stop();
long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
root_infos[type_no].distances.push_back(distance);
root_infos[type_no].iterations.push_back(iters); //
root_infos[type_no].full_results.push_back(result);
}
{
// algorithm_names.push_back("Newton"); // algorithm
cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
ti.start();
for (long i = 0; i < count; ++i)
{
result = cbrt_deriv(to_root); //
sum += result;
}
now = ti.elapsed();
// int time = static_cast<int>(now.user / count);
long time = static_cast<long>(now.user/1000);
root_infos[type_no].times.push_back(time); // CPU time taken.
if (time < root_infos[type_no].min_time)
{
root_infos[type_no].min_time = time;
}
ti.stop();
long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
root_infos[type_no].distances.push_back(distance);
root_infos[type_no].iterations.push_back(iters); //
root_infos[type_no].full_results.push_back(result);
}
{
//algorithm_names.push_back("Halley"); // algorithm
cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
ti.start();
for (long i = 0; i < count; ++i)
{
result = cbrt_2deriv(to_root); //
sum += result;
}
now = ti.elapsed();
// int time = static_cast<int>(now.user / count);
long time = static_cast<long>(now.user/1000);
root_infos[type_no].times.push_back(time); // CPU time taken.
ti.stop();
if (time < root_infos[type_no].min_time)
{
root_infos[type_no].min_time = time;
}
long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
root_infos[type_no].distances.push_back(distance);
root_infos[type_no].iterations.push_back(iters); //
root_infos[type_no].full_results.push_back(result);
}
{
// algorithm_names.push_back("Shroeder"); // algorithm
cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
ti.start();
for (long i = 0; i < count; ++i)
{
result = cbrt_2deriv_s(to_root); //
sum += result;
}
now = ti.elapsed();
// int time = static_cast<int>(now.user / count);
long time = static_cast<long>(now.user/1000);
root_infos[type_no].times.push_back(time); // CPU time taken.
if (time < root_infos[type_no].min_time)
{
root_infos[type_no].min_time = time;
}
ti.stop();
long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
root_infos[type_no].distances.push_back(distance);
root_infos[type_no].iterations.push_back(iters); //
root_infos[type_no].full_results.push_back(result);
}
for (size_t i = 0; i != root_infos[type_no].times.size(); i++)
{ // Normalize times.
double normed_time = static_cast<double>(root_infos[type_no].times[i]);
normed_time /= root_infos[type_no].min_time;
root_infos[type_no].normed_times.push_back(normed_time);
}
algo++;
std::cout << "Accumulated sum was " << sum << std::endl;
return algo; // Count of how many algorithms used.
} // test_root
void table_root_info(cpp_bin_float_100 full_value, cpp_bin_float_100 full_answer)
{
// Fill the elements.
test_root<float>(full_value, full_answer, "float");
test_root<double>(full_value, full_answer, "double");
test_root<long double>(full_value, full_answer, "long double");
test_root<cpp_bin_float_50>(full_value, full_answer, "cpp_bin_float_50");
//test_root<cpp_bin_float_100>(full_value, full_answer, "cpp_bin_float_100");
std::cout << root_infos.size() << " floating-point types tested:" << std::endl;
#ifndef NDEBUG
std::cout << "Compiled in debug mode." << std::endl;
#else
std::cout << "Compiled in optimise mode." << std::endl;
#endif
for (size_t tp = 0; tp != root_infos.size(); tp++)
{ // For all types:
std::cout << std::endl;
std::cout << "Floating-point type = " << root_infos[tp].short_typename << std::endl;
std::cout << "Floating-point type = " << root_infos[tp].full_typename << std::endl;
std::cout << "Max_digits10 = " << root_infos[tp].max_digits10 << std::endl;
std::cout << "Binary digits = " << root_infos[tp].bin_digits << std::endl;
std::cout << "Accuracy digits = " << root_infos[tp].get_digits - 2 << ", " << static_cast<int>(root_infos[tp].get_digits * 0.6) << ", " << static_cast<int>(root_infos[tp].get_digits * 0.4) << std::endl;
std::cout << "min_time = " << root_infos[tp].min_time << std::endl;
std::cout << std::setprecision(root_infos[tp].max_digits10 ) << "Roots = ";
std::copy(root_infos[tp].full_results.begin(), root_infos[tp].full_results.end(), std::ostream_iterator<cpp_bin_float_100>(std::cout, " "));
std::cout << std::endl;
// Header row.
std::cout << "Algorithm " << "Iterations " << "Times " << "Norm_times " << "Distance" << std::endl;
// Row for all algorithms.
for (unsigned algo = 0; algo != algo_names.size(); algo++)
{
std::cout
<< std::left << std::setw(20) << algo_names[algo] << " "
<< std::setw(8) << std::setprecision(2) << root_infos[tp].iterations[algo] << " "
<< std::setw(8) << std::setprecision(5) << root_infos[tp].times[algo] << " "
<< std::setw(8) << std::setprecision(3) << root_infos[tp].normed_times[algo] << " "
<< std::setw(8) << std::setprecision(2) << root_infos[tp].distances[algo]
<< std::endl;
} // for algo
} // for tp
// Print info as Quickbook table.
#if 0
fout << "[table:cbrt_5 Info for float, double, long double and cpp_bin_float_50\n"
<< "[[type name] [max_digits10] [binary digits] [required digits]]\n";// header.
for (size_t tp = 0; tp != root_infos.size(); tp++)
{ // For all types:
fout << "["
<< "[" << root_infos[tp].short_typename << "]"
<< "[" << root_infos[tp].max_digits10 << "]" // max_digits10
<< "[" << root_infos[tp].bin_digits << "]"// < "Binary digits
<< "[" << root_infos[tp].get_digits << "]]\n"; // Accuracy digits.
} // tp
fout << "] [/table cbrt_5] \n" << std::endl;
#endif
// Prepare Quickbook table of floating-point types.
fout << "[table:cbrt_4 Cube root(28) for float, double, long double and cpp_bin_float_50\n"
<< "[[][float][][][] [][double][][][] [][long d][][][] [][cpp50][][]]\n"
<< "[[Algorithm]";
for (size_t tp = 0; tp != root_infos.size(); tp++)
{ // For all types:
fout << "[Its]" << "[Times]" << "[Norm]" << "[Dis]" << "[ ]";
}
fout << "]" << std::endl;
// Row for all algorithms.
for (size_t algo = 0; algo != algo_names.size(); algo++)
{
fout << "[[" << std::left << std::setw(9) << algo_names[algo] << "]";
for (size_t tp = 0; tp != root_infos.size(); tp++)
{ // For all types:
fout
<< "[" << std::right << std::showpoint
<< std::setw(3) << std::setprecision(2) << root_infos[tp].iterations[algo] << "]["
<< std::setw(5) << std::setprecision(5) << root_infos[tp].times[algo] << "][";
if(fabs(root_infos[tp].normed_times[algo]) <= 1.05)
fout << "[role blue " << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo] << "]";
else if(fabs(root_infos[tp].normed_times[algo]) > 4)
fout << "[role red " << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo] << "]";
else
fout << std::setw(3) << std::setprecision(2) << root_infos[tp].normed_times[algo];
fout
<< "]["
<< std::setw(3) << std::setprecision(2) << root_infos[tp].distances[algo] << "][ ]";
} // tp
fout <<"]" << std::endl;
} // for algo
fout << "] [/end of table cbrt_4]\n";
} // void table_root_info
int main()
{
using namespace boost::multiprecision;
using namespace boost::math;
try
{
std::cout << "Tests run with " << BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << ", ";
if (fout.is_open())
{
std::cout << "\nOutput to " << filename << std::endl;
}
else
{ // Failed to open.
std::cout << " Open file " << filename << " for output failed!" << std::endl;
std::cout << "error" << errno << std::endl;
return boost::exit_failure;
}
fout <<
"[/""\n"
"Copyright 2015 Paul A. Bristow.""\n"
"Copyright 2015 John Maddock.""\n"
"Distributed under the Boost Software License, Version 1.0.""\n"
"(See accompanying file LICENSE_1_0.txt or copy at""\n"
"http://www.boost.org/LICENSE_1_0.txt).""\n"
"]""\n"
<< std::endl;
std::string debug_or_optimize;
#ifdef _DEBUG
#if (_DEBUG == 0)
debug_or_optimize = "Compiled in debug mode.";
#else
debug_or_optimize = "Compiled in optimise mode.";
#endif
#endif
// Print out the program/compiler/stdlib/platform names as a Quickbook comment:
fout << "\n[h5 Program " << short_file_name(sourcefilename) << ", "
<< BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", "
<< BOOST_PLATFORM << (sizeof(void*) == 8 ? ", x64" : ", x86")
<< debug_or_optimize << "[br]"
<< count << " evaluations of each of " << algo_names.size() << " root_finding algorithms."
<< "]"
<< std::endl;
std::cout << count << " evaluations of root_finding." << std::endl;
BOOST_MATH_CONTROL_FP;
cpp_bin_float_100 full_value("28");
cpp_bin_float_100 full_answer ("3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895");
std::copy(max_digits10s.begin(), max_digits10s.end(), std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
table_root_info(full_value, full_answer);
return boost::exit_success;
}
catch (std::exception const& ex)
{
std::cout << "exception thrown: " << ex.what() << std::endl;
return boost::exit_failure;
}
} // int main()
/*
debug
1> float, maxdigits10 = 9
1> 6 algorithms used.
1> Digits required = 24.0000000
1> find root of 28.0000000, expected answer = 3.03658897
1> Times 156 312 18750 4375 3437 3906
1> Iterations: 0 0 8 6 4 5
1> Distance: 0 0 -1 0 0 0
1> Roots: 3.03658891 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
release
1> float, maxdigits10 = 9
1> 6 algorithms used.
1> Digits required = 24.0000000
1> find root of 28.0000000, expected answer = 3.03658897
1> Times 0 312 6875 937 937 937
1> Iterations: 0 0 8 6 4 5
1> Distance: 0 0 -1 0 0 0
1> Roots: 3.03658891 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
1>
1> 5 algorithms used:
1> 10 algorithms used:
1> boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder
1> 2 types compared.
1> Precision of full type = 102 decimal digits
1> Find root of 28.000000000000000,
1> Expected answer = 3.0365889718756625
1> typeid(T).name()float, maxdigits10 = 9
1> find root of 28.0000000, expected answer = 3.03658897
1>
1> Iterations: 0 8 6 4 5
1> Times 468 8437 4375 3593 4062
1> Min Time 468
1> Normalized Times 1.00 18.0 9.35 7.68 8.68
1> Distance: 0 -1 0 0 0
1> Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
1> ==================================================================
1> typeid(T).name()double, maxdigits10 = 17
1> find root of 28.000000000000000, expected answer = 3.0365889718756625
1>
1> Iterations: 0 11 7 5 6
1> Times 312 15000 4531 3906 4375
1> Min Time 312
1> Normalized Times 1.00 48.1 14.5 12.5 14.0
1> Distance: 1 2 0 0 0
1> Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627
1> ==================================================================
Release
1> 5 algorithms used:
1> 10 algorithms used:
1> boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder
1> 2 types compared.
1> Precision of full type = 102 decimal digits
1> Find root of 28.000000000000000,
1> Expected answer = 3.0365889718756625
1> typeid(T).name()float, maxdigits10 = 9
1> find root of 28.0000000, expected answer = 3.03658897
1>
1> Iterations: 0 8 6 4 5
1> Times 312 781 937 937 937
1> Min Time 312
1> Normalized Times 1.00 2.50 3.00 3.00 3.00
1> Distance: 0 -1 0 0 0
1> Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
1> ==================================================================
1> typeid(T).name()double, maxdigits10 = 17
1> find root of 28.000000000000000, expected answer = 3.0365889718756625
1>
1> Iterations: 0 11 7 5 6
1> Times 312 1093 937 937 937
1> Min Time 312
1> Normalized Times 1.00 3.50 3.00 3.00 3.00
1> Distance: 1 2 0 0 0
1> Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627
1> ==================================================================
1> 5 algorithms used:
1> 15 algorithms used:
1> boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder boost::math::cbrt TOMS748 Newton Halley Shroeder
1> 3 types compared.
1> Precision of full type = 102 decimal digits
1> Find root of 28.00000000000000000000000000000000000000000000000000,
1> Expected answer = 3.036588971875662519420809578505669635581453977248111
1> typeid(T).name()float, maxdigits10 = 9
1> find root of 28.0000000, expected answer = 3.03658897
1>
1> Iterations: 0 8 6 4 5
1> Times 156 781 937 1093 937
1> Min Time 156
1> Normalized Times 1.00 5.01 6.01 7.01 6.01
1> Distance: 0 -1 0 0 0
1> Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
1> ==================================================================
1> typeid(T).name()double, maxdigits10 = 17
1> find root of 28.000000000000000, expected answer = 3.0365889718756625
1>
1> Iterations: 0 11 7 5 6
1> Times 312 1093 937 937 937
1> Min Time 312
1> Normalized Times 1.00 3.50 3.00 3.00 3.00
1> Distance: 1 2 0 0 0
1> Roots: 3.0365889718756622 3.0365889718756618 3.0365889718756627 3.0365889718756627 3.0365889718756627
1> ==================================================================
1> typeid(T).name()class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50,10,void,int,0,0>,0>, maxdigits10 = 52
1> find root of 28.00000000000000000000000000000000000000000000000000, expected answer = 3.036588971875662519420809578505669635581453977248111
1>
1> Iterations: 0 13 9 6 7
1> Times 8750 177343 30312 52968 58125
1> Min Time 8750
1> Normalized Times 1.00 20.3 3.46 6.05 6.64
1> Distance: 0 0 -1 0 0
1> Roots: 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248117 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106
1> ==================================================================
Reduce accuracy required to 0.5
1> 5 algorithms used:
1> 15 algorithms used:
1> boost::math::cbrt TOMS748 Newton Halley Shroeder
1> 3 floating_point types compared.
1> Precision of full type = 102 decimal digits
1> Find root of 28.00000000000000000000000000000000000000000000000000,
1> Expected answer = 3.036588971875662519420809578505669635581453977248111
1> typeid(T).name() = float, maxdigits10 = 9
1> Digits accuracy fraction required = 0.500000000
1> find root of 28.0000000, expected answer = 3.03658897
1>
1> Iterations: 0 8 5 3 4
1> Times 156 5937 1406 1250 1250
1> Min Time 156
1> Normalized Times 1.0 38. 9.0 8.0 8.0
1> Distance: 0 -1 0 0 0
1> Roots: 3.03658891 3.03658915 3.03658891 3.03658891 3.03658891
1> ==================================================================
1> typeid(T).name() = double, maxdigits10 = 17
1> Digits accuracy fraction required = 0.50000000000000000
1> find root of 28.000000000000000, expected answer = 3.0365889718756625
1>
1> Iterations: 0 8 6 4 5
1> Times 156 6250 1406 1406 1250
1> Min Time 156
1> Normalized Times 1.0 40. 9.0 9.0 8.0
1> Distance: 1 3695766 0 0 0
1> Roots: 3.0365889718756622 3.0365889702344129 3.0365889718756627 3.0365889718756627 3.0365889718756627
1> ==================================================================
1> typeid(T).name() = class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50,10,void,int,0,0>,0>, maxdigits10 = 52
1> Digits accuracy fraction required = 0.5000000000000000000000000000000000000000000000000000
1> find root of 28.00000000000000000000000000000000000000000000000000, expected answer = 3.036588971875662519420809578505669635581453977248111
1>
1> Iterations: 0 11 8 5 6
1> Times 11562 239843 34843 47500 47812
1> Min Time 11562
1> Normalized Times 1.0 21. 3.0 4.1 4.1
1> Distance: 0 0 -1 0 0
1> Roots: 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248117 3.036588971875662519420809578505669635581453977248106 3.036588971875662519420809578505669635581453977248106
1> ==================================================================
*/
|