File: root_n_finding_algorithms.cpp

package info (click to toggle)
boost1.88 1.88.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 576,932 kB
  • sloc: cpp: 4,149,234; xml: 136,789; ansic: 35,092; python: 33,910; asm: 5,698; sh: 4,604; ada: 1,681; makefile: 1,633; pascal: 1,139; perl: 1,124; sql: 640; yacc: 478; ruby: 271; java: 77; lisp: 24; csh: 6
file content (869 lines) | stat: -rw-r--r-- 31,024 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
// Copyright Paul A. Bristow 2015

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

// Comparison of finding roots using TOMS748, Newton-Raphson, Halley & Schroder algorithms.
// root_n_finding_algorithms.cpp  Generalised for nth root version.

// http://en.wikipedia.org/wiki/Cube_root

// Note that this file contains Quickbook mark-up as well as code
// and comments, don't change any of the special comment mark-ups!
// This program also writes files in Quickbook tables mark-up format.

#include <boost/cstdlib.hpp>
#include <boost/config.hpp>
#include <boost/math/concepts/real_concept.hpp>
#include <boost/math/tools/roots.hpp>

//using boost::math::policies::policy;
//using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
//using boost::math::tools::bracket_and_solve_root;
//using boost::math::tools::toms748_solve;
//using boost::math::tools::halley_iterate; 
//using boost::math::tools::newton_raphson_iterate;
//using boost::math::tools::schroder_iterate;

#include <boost/math/special_functions/next.hpp> // For float_distance.
#include <boost/math/special_functions/pow.hpp> // For pow<N>.
#include <boost/math/tools/tuple.hpp> // for tuple and make_tuple.

#include <boost/multiprecision/cpp_bin_float.hpp> // is binary.
using boost::multiprecision::cpp_bin_float_100;
using boost::multiprecision::cpp_bin_float_50;

#include <boost/timer/timer.hpp>
#include <boost/system/error_code.hpp>
#include <boost/preprocessor/stringize.hpp>

// STL
#include <iostream>
#include <iomanip>
#include <string>
#include <vector>
#include <limits>
#include <fstream> // std::ofstream
#include <cmath>
#include <typeinfo> // for type name using typid(thingy).name();
#include <type_traits>

#ifdef __FILE__
  std::string sourcefilename = __FILE__;
#else
  std::string sourcefilename("");
#endif

  std::string chop_last(std::string s)
  {
     std::string::size_type pos = s.find_last_of("\\/");
     if(pos != std::string::npos)
        s.erase(pos);
     else if(s.empty())
        abort();
     else
        s.erase();
     return s;
  }

  std::string make_root()
  {
     std::string result;
     if(sourcefilename.find_first_of(":") != std::string::npos)
     {
        result = chop_last(sourcefilename); // lose filename part
        result = chop_last(result);   // lose /example/
        result = chop_last(result);   // lose /math/
        result = chop_last(result);   // lose /libs/
     }
     else
     {
        result = chop_last(sourcefilename); // lose filename part
        if(result.empty())
           result = ".";
        result += "/../../..";
     }
     return result;
  }

  std::string short_file_name(std::string s)
  {
     std::string::size_type pos = s.find_last_of("\\/");
     if(pos != std::string::npos)
        s.erase(0, pos + 1);
     return s;
  }

  std::string boost_root = make_root();


std::string fp_hardware; // Any hardware features like SEE or AVX

const std::string roots_name = "libs/math/doc/roots/";

const std::string full_roots_name(boost_root + "/libs/math/doc/roots/");

const std::size_t nooftypes = 4;
const std::size_t noofalgos = 4;

double digits_accuracy = 1.0; // 1 == maximum possible accuracy.

std::stringstream ss;

std::ofstream fout;

std::vector<std::string> algo_names =
{
  "TOMS748", "Newton", "Halley", "Schr'''&#xf6;'''der"
};

std::vector<std::string> names =
{
  "float", "double", "long double", "cpp_bin_float50"
};

uintmax_t iters; // Global as value of iterations is not returned.

struct root_info
{ // for a floating-point type, float, double ...
  std::size_t max_digits10; // for type.
  std::string full_typename; // for type from type_id.name().
  std::string short_typename; // for type "float", "double", "cpp_bin_float_50" ....
  std::size_t bin_digits;  // binary in floating-point type numeric_limits<T>::digits;  
  int get_digits; // fraction of maximum possible accuracy required.
  // = digits * digits_accuracy
  // Vector of values (4) for each algorithm, TOMS748, Newton, Halley & Schroder.
  //std::vector< std::int_least64_t> times;  converted to int.
  std::vector<int> times; // arbitrary units (ticks).
  //std::int_least64_t min_time = std::numeric_limits<std::int_least64_t>::max(); // Used to normalize times (as int).
  std::vector<double> normed_times;
  int min_time = (std::numeric_limits<int>::max)(); // Used to normalize times.
  std::vector<uintmax_t> iterations;
  std::vector<long int> distances;
  std::vector<cpp_bin_float_100> full_results;
}; // struct root_info

std::vector<root_info> root_infos;  // One element for each floating-point type used.

inline std::string build_test_name(const char* type_name, const char* test_name)
{
  std::string result(BOOST_COMPILER);
  result += "|";
  result += BOOST_STDLIB;
  result += "|";
  result += BOOST_PLATFORM;
  result += "|";
  result += type_name;
  result += "|";
  result += test_name;
#if defined(_DEBUG) || !defined(NDEBUG)
  result += "|";
  result += " debug";
#else
  result += "|";
  result += " release";
#endif
  result += "|";
  return result;
} // std::string build_test_name

// Algorithms //////////////////////////////////////////////

// No derivatives - using TOMS748 internally.

template <int N, typename T = double>
struct nth_root_functor_noderiv
{ //  Nth root of x using only function - no derivatives.
  nth_root_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of)
  { // Constructor just stores value a to find root of.
  }
  T operator()(T const& x)
  {
    using boost::math::pow;
    T fx = pow<N>(x) -a; // Difference (estimate x^n - a).
    return fx;
  }
private:
  T a; // to be 'cube_rooted'.
}; // template <int N, class T> struct nth_root_functor_noderiv

template <int N, class T = double>
T nth_root_noderiv(T x)
{ // return Nth root of x using bracket_and_solve (using NO derivatives).
  using namespace std;  // Help ADL of std functions.
  using namespace boost::math::tools; // For bracket_and_solve_root.

  typedef double guess_type;

  int exponent;
  frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
  T guess = static_cast<T>(ldexp(static_cast<guess_type>(1.), exponent / N)); // Rough guess is to divide the exponent by n.
  //T min = static_cast<T>(ldexp(static_cast<guess_type>(1.) / 2, exponent / N)); // Minimum possible value is half our guess.
  //T max = static_cast<T>(ldexp(static_cast<guess_type>(2.), exponent / N)); // Maximum possible value is twice our guess.

  T factor = 2; // How big steps to take when searching.

  const std::uintmax_t maxit = 50; // Limit to maximum iterations.
  std::uintmax_t it = maxit; // Initially our chosen max iterations, but updated with actual.
  bool is_rising = true; // So if result if guess^3 is too low, then try increasing guess.
  // Some fraction of digits is used to control how accurate to try to make the result.
  int get_digits = std::numeric_limits<T>::digits - 2;
  eps_tolerance<T> tol(get_digits); // Set the tolerance.
  std::pair<T, T> r;
  r =  bracket_and_solve_root(nth_root_functor_noderiv<N, T>(x), guess, factor, is_rising, tol, it);
  iters = it;
  T result = r.first + (r.second - r.first) / 2;  // Midway between brackets.
  return result;
} // template <class T> T nth_root_noderiv(T x)

// Using 1st derivative only Newton-Raphson

template <int N, class T = double>
struct nth_root_functor_1deriv
{ // Functor also returning 1st derivative.
  static_assert(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
  static_assert((N > 0) == true, "root N must be > 0!");

  nth_root_functor_1deriv(T const& to_find_root_of) : a(to_find_root_of)
  { // Constructor stores value a to find root of, for example:
  }
  std::pair<T, T> operator()(T const& x)
  { // Return both f(x) and f'(x).
    using boost::math::pow; // // Compile-time integral power.
    T p = pow<N - 1>(x);
    return std::make_pair(p * x - a, N * p); // 'return' both fx and dx.
  }

private:
  T a; // to be 'nth_rooted'.
}; // struct nthroot__functor_1deriv

template <int N, class T = double>
T nth_root_1deriv(T x)
{ // return nth root of x using 1st derivative and Newton_Raphson.
  using namespace std;  // Help ADL of std functions.
  using namespace boost::math::tools; // For newton_raphson_iterate.

  static_assert(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
  static_assert((N > 0) == true, "root N must be > 0!");
  static_assert((N > 1000) == false, "root N is too big!");

  typedef double guess_type;

  int exponent;
  frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
  T guess = static_cast<T>(ldexp(static_cast<guess_type>(1.), exponent / N)); // Rough guess is to divide the exponent by n.
  T min = static_cast<T>(ldexp(static_cast<guess_type>(1.) / 2, exponent / N)); // Minimum possible value is half our guess.
  T max = static_cast<T>(ldexp(static_cast<guess_type>(2.), exponent / N)); // Maximum possible value is twice our guess.

  int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
  int get_digits = static_cast<int>(digits * 0.6);
  const std::uintmax_t maxit = 20;
  std::uintmax_t it = maxit;
  T result = newton_raphson_iterate(nth_root_functor_1deriv<N, T>(x), guess, min, max, get_digits, it);
  iters = it;
  return result;
} // T nth_root_1_deriv  Newton-Raphson

// Using 1st and 2nd derivatives with Halley algorithm.

template <int N, class T = double>
struct nth_root_functor_2deriv
{ // Functor returning both 1st and 2nd derivatives.
  static_assert(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
  static_assert((N > 0) == true, "root N must be > 0!");

  nth_root_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
  { // Constructor stores value a to find root of, for example:
  }

  // using boost::math::tuple; // to return three values.
  std::tuple<T, T, T> operator()(T const& x)
  { // Return f(x), f'(x) and f''(x).
    using boost::math::pow; // Compile-time integral power.
    T p = pow<N - 2>(x);

    return std::make_tuple(p * x * x - a, p * x * N, p * N * (N - 1)); // 'return' fx, dx and d2x.
  }
private:
  T a; // to be 'nth_rooted'.
};

template <int N, class T = double>
T nth_root_2deriv(T x)
{ // return nth root of x using 1st and 2nd derivatives and Halley.

  using namespace std;  // Help ADL of std functions.
  using namespace boost::math::tools; // For halley_iterate.

  static_assert(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
  static_assert((N > 0) == true, "root N must be > 0!");
  static_assert((N > 1000) == false, "root N is too big!");

  typedef double guess_type;

  int exponent;
  frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
  T guess = static_cast<T>(ldexp(static_cast<guess_type>(1.), exponent / N)); // Rough guess is to divide the exponent by n.
  T min = static_cast<T>(ldexp(static_cast<guess_type>(1.) / 2, exponent / N)); // Minimum possible value is half our guess.
  T max = static_cast<T>(ldexp(static_cast<guess_type>(2.), exponent / N)); // Maximum possible value is twice our guess.

  int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
  int get_digits = static_cast<int>(digits * 0.4);
  const std::uintmax_t maxit = 20;
  std::uintmax_t it = maxit;
  T result = halley_iterate(nth_root_functor_2deriv<N, T>(x), guess, min, max, get_digits, it);
  iters = it;

  return result;
} // nth_2deriv Halley

template <int N, class T = double>
T nth_root_2deriv_s(T x)
{ // return nth root of x using 1st and 2nd derivatives and Schroder.

  using namespace std;  // Help ADL of std functions.
  using namespace boost::math::tools; // For schroder_iterate.

  static_assert(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
  static_assert((N > 0) == true, "root N must be > 0!");
  static_assert((N > 1000) == false, "root N is too big!");

  typedef double guess_type;

  int exponent;
  frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
  T guess = static_cast<T>(ldexp(static_cast<guess_type>(1.), exponent / N)); // Rough guess is to divide the exponent by n.
  T min = static_cast<T>(ldexp(static_cast<guess_type>(1.) / 2, exponent / N)); // Minimum possible value is half our guess.
  T max = static_cast<T>(ldexp(static_cast<guess_type>(2.), exponent / N)); // Maximum possible value is twice our guess.

  int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
  const std::uintmax_t maxit = 20;
  std::uintmax_t it = maxit;
  T result = schroder_iterate(nth_root_functor_2deriv<N, T>(x), guess, min, max, get_digits, it);
  iters = it;

  return result;
} // T nth_root_2deriv_s Schroder

//////////////////////////////////////////////////////// end of algorithms - perhaps in a separate .hpp?

//! Print 4 floating-point types info: max_digits10, digits and required accuracy digits as a Quickbook table.
int table_type_info(double digits_accuracy)
{
  std::string qbk_name = full_roots_name; // Prefix by boost_root file.

  qbk_name += "type_info_table";
  std::stringstream ss;
  ss.precision(3);
  ss << "_" << digits_accuracy * 100;
  qbk_name += ss.str();

#ifdef _MSC_VER
  qbk_name += "_msvc.qbk";
#else // assume GCC
  qbk_name += "_gcc.qbk";
#endif

  // Example: type_info_table_100_msvc.qbk
  fout.open(qbk_name, std::ios_base::out);

  if (fout.is_open())
  {
    std::cout << "Output type table to " << qbk_name << std::endl;
  }
  else
  { // Failed to open.
    std::cout << " Open file " << qbk_name << " for output failed!" << std::endl;
    std::cout << "errno " << errno << std::endl;
    return errno;
  }

  fout <<
    "[/"
    << qbk_name
    << "\n"
    "Copyright 2015 Paul A. Bristow.""\n"
    "Copyright 2015 John Maddock.""\n"
    "Distributed under the Boost Software License, Version 1.0.""\n"
    "(See accompanying file LICENSE_1_0.txt or copy at""\n"
    "http://www.boost.org/LICENSE_1_0.txt).""\n"
    "]""\n"
    << std::endl;

  fout << "[h6 Fraction of maximum possible bits of accuracy required is " << digits_accuracy << ".]\n" << std::endl;

  std::string table_id("type_info");
  table_id += ss.str(); // Fraction digits accuracy.

#ifdef _MSC_VER
  table_id += "_msvc";
#else // assume GCC
  table_id += "_gcc";
#endif

  fout << "[table:" << table_id << " Digits for float, double, long double and cpp_bin_float_50\n"
    << "[[type name] [max_digits10] [binary digits] [required digits]]\n";// header.

  // For all fout types:

  fout  << "[[" << "float" << "]"
    << "[" << std::numeric_limits<float>::max_digits10 << "]"  // max_digits10
    << "[" << std::numeric_limits<float>::digits << "]"// < "Binary digits 
    << "[" << static_cast<int>(std::numeric_limits<float>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.

  fout << "[[" << "float" << "]"
    << "[" << std::numeric_limits<double>::max_digits10 << "]"  // max_digits10
    << "[" << std::numeric_limits<double>::digits << "]"// < "Binary digits 
    << "[" << static_cast<int>(std::numeric_limits<double>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.

  fout << "[[" << "long double" << "]"
    << "[" << std::numeric_limits<long double>::max_digits10 << "]"  // max_digits10
    << "[" << std::numeric_limits<long double>::digits << "]"// < "Binary digits 
    << "[" << static_cast<int>(std::numeric_limits<long double>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.

  fout << "[[" << "cpp_bin_float_50" << "]"
    << "[" << std::numeric_limits<cpp_bin_float_50>::max_digits10 << "]"  // max_digits10
    << "[" << std::numeric_limits<cpp_bin_float_50>::digits << "]"// < "Binary digits 
    << "[" << static_cast<int>(std::numeric_limits<cpp_bin_float_50>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.

  fout << "] [/table table_id_msvc] \n" << std::endl; // End of table.

  fout.close();
  return 0;
} // type_table

//! Evaluate root N timing for each algorithm, and for one floating-point type T. 
template <int N, typename T>
int test_root(cpp_bin_float_100 big_value, cpp_bin_float_100 answer, const char* type_name, std::size_t type_no)
{
  std::size_t max_digits = 2 + std::numeric_limits<T>::digits * 3010 / 10000;
  // For new versions use max_digits10
  // std::cout.precision(std::numeric_limits<T>::max_digits10);
  std::cout.precision(max_digits);
  std::cout << std::showpoint << std::endl; // Show trailing zeros too.

  root_infos.push_back(root_info()); 

  root_infos[type_no].max_digits10 = max_digits;
  root_infos[type_no].full_typename = typeid(T).name(); // Full typename.
  root_infos[type_no].short_typename = type_name; // Short typename.
  root_infos[type_no].bin_digits = std::numeric_limits<T>::digits;
  root_infos[type_no].get_digits = static_cast<int>(std::numeric_limits<T>::digits * digits_accuracy);

  T to_root = static_cast<T>(big_value);

  T result; // root
  T sum = 0;
  T ans = static_cast<T>(answer);

  using boost::timer::nanosecond_type;
  using boost::timer::cpu_times;
  using boost::timer::cpu_timer;

  int eval_count = std::is_floating_point<T>::value ? 10000000 : 100000; // To give a sufficiently stable timing for the fast built-in types,
  //int eval_count = 1000000; // To give a sufficiently stable timing for the fast built-in types,
  // This takes an inconveniently long time for multiprecision cpp_bin_float_50 etc  types.

  cpu_times now; // Holds wall, user and system times.

  { // Evaluate times etc for each algorithm.
    //algorithm_names.push_back("TOMS748"); // 
    cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
    ti.start();
    for (long i = 0; i < eval_count; ++i)
    {
      result = nth_root_noderiv<N, T>(to_root); // 
      sum += result;
    }
    now = ti.elapsed();
    int time = static_cast<int>(now.user / eval_count);
    root_infos[type_no].times.push_back(time); // CPU time taken.
    if (time < root_infos[type_no].min_time)
    {
      root_infos[type_no].min_time = time;
    }
    ti.stop();
    long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
    root_infos[type_no].distances.push_back(distance);
    root_infos[type_no].iterations.push_back(iters); // 
    root_infos[type_no].full_results.push_back(result);
  }
  {
    // algorithm_names.push_back("Newton"); // algorithm
    cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
    ti.start();
    for (long i = 0; i < eval_count; ++i)
    {
      result = nth_root_1deriv<N, T>(to_root); // 
      sum += result;
    }
    now = ti.elapsed();
    int time = static_cast<int>(now.user / eval_count);
    root_infos[type_no].times.push_back(time); // CPU time taken.
    if (time < root_infos[type_no].min_time)
    {
      root_infos[type_no].min_time = time;
    }

    ti.stop();
    long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
    root_infos[type_no].distances.push_back(distance);
    root_infos[type_no].iterations.push_back(iters); //
    root_infos[type_no].full_results.push_back(result);
  }
  {
    //algorithm_names.push_back("Halley"); // algorithm
    cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
    ti.start();
    for (long i = 0; i < eval_count; ++i)
    {
      result = nth_root_2deriv<N>(to_root); // 
      sum += result;
    }
    now = ti.elapsed();
    int time = static_cast<int>(now.user / eval_count);
    root_infos[type_no].times.push_back(time); // CPU time taken.
    ti.stop();
    if (time < root_infos[type_no].min_time)
    {
      root_infos[type_no].min_time = time;
    }
    long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
    root_infos[type_no].distances.push_back(distance);
    root_infos[type_no].iterations.push_back(iters); // 
    root_infos[type_no].full_results.push_back(result);
  }
  {
    // algorithm_names.push_back("Schroder"); // algorithm
    cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
    ti.start();
    for (long i = 0; i < eval_count; ++i)
    {
      result = nth_root_2deriv_s<N>(to_root); // 
      sum += result;
    }
    now = ti.elapsed();
    int time = static_cast<int>(now.user / eval_count);
    root_infos[type_no].times.push_back(time); // CPU time taken.
    if (time < root_infos[type_no].min_time)
    {
      root_infos[type_no].min_time = time;
    }
    ti.stop();
    long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
    root_infos[type_no].distances.push_back(distance);
    root_infos[type_no].iterations.push_back(iters); // 
    root_infos[type_no].full_results.push_back(result);
  }
  for (size_t i = 0; i != root_infos[type_no].times.size(); i++) // For each time.
  { // Normalize times.
    root_infos[type_no].normed_times.push_back(static_cast<double>(root_infos[type_no].times[i]) / root_infos[type_no].min_time);
  }

  std::cout << "Accumulated result was: " << sum << std::endl;

  return 4;  // eval_count of how many algorithms used.
} // test_root

/*! Fill array of times, iterations, etc for Nth root for all 4 types,
 and write a table of results in Quickbook format.
 */
template <int N>
void table_root_info(cpp_bin_float_100 full_value)
{
   using std::abs;
  std::cout << nooftypes << " floating-point types tested:" << std::endl;
#if defined(_DEBUG) || !defined(NDEBUG)
  std::cout << "Compiled in debug mode." << std::endl;
#else
  std::cout << "Compiled in optimise mode." << std::endl;
#endif
  std::cout << "FP hardware " << fp_hardware << std::endl;
  // Compute the 'right' answer for root N at 100 decimal digits.
  cpp_bin_float_100 full_answer = nth_root_noderiv<N, cpp_bin_float_100>(full_value);

  root_infos.clear(); // Erase any previous data.
  // Fill the elements of the array for each floating-point type.

  test_root<N, float>(full_value, full_answer, "float", 0);
  test_root<N, double>(full_value, full_answer, "double", 1);
  test_root<N, long double>(full_value, full_answer, "long double", 2);
  test_root<N, cpp_bin_float_50>(full_value, full_answer, "cpp_bin_float_50", 3);

  // Use info from 4 floating point types to

  // Prepare Quickbook table for a single root
  // with columns of times, iterations, distances repeated for various floating-point types,
  // and 4 rows for each algorithm.

  std::stringstream table_info;
  table_info.precision(3);
  table_info << "[table:root_" << N << " " << N << "th root(" << static_cast<float>(full_value) << ") for float, double, long double and cpp_bin_float_50 types";
  if (fp_hardware != "")
  {
    table_info << ", using " << fp_hardware;
  }
  table_info << std::endl;

  fout << table_info.str()
    << "[[][float][][][] [][double][][][] [][long d][][][] [][cpp50][][]]\n"
    << "[[Algo     ]";
  for (size_t tp = 0; tp != nooftypes; tp++)
  { // For all types:
    fout << "[Its]" << "[Times]" << "[Norm]" << "[Dis]" << "[ ]";
  }
  fout << "]" << std::endl;

  // Row for all algorithms.
  for (std::size_t algo = 0; algo != noofalgos; algo++)
  {
    fout << "[[" << std::left << std::setw(9) << algo_names[algo] << "]";
    for (size_t tp = 0; tp != nooftypes; tp++)
    { // For all types:
      fout
        << "[" << std::right << std::showpoint
        << std::setw(3) << std::setprecision(2) << root_infos[tp].iterations[algo] << "]["
        << std::setw(5) << std::setprecision(5) << root_infos[tp].times[algo] << "][";
      fout << std::setw(3) << std::setprecision(3);
        double normed_time = root_infos[tp].normed_times[algo];
        if (abs(normed_time - 1.00) <= 0.05)
        { // At or near the best time, so show as blue.
          fout << "[role blue " << normed_time << "]";
        }
        else if (abs(normed_time) > 4.)
        { // markedly poor so show as red.
          fout << "[role red " << normed_time << "]";
        }
        else
        { // Not the best, so normal black.
          fout << normed_time;
        }
        fout << "]["
        << std::setw(3) << std::setprecision(2) << root_infos[tp].distances[algo] << "][ ]";
    } // tp
    fout << "]" << std::endl;
  } // for algo
  fout << "] [/end of table root]\n";
} // void table_root_info

/*! Output program header, table of type info, and tables for 4 algorithms and 4 floating-point types,
 for Nth root required digits_accuracy.
 */

int roots_tables(cpp_bin_float_100 full_value, double digits_accuracy)
{
  ::digits_accuracy = digits_accuracy;
  // Save globally so that it is available to root-finding algorithms. Ugly :-(

#if defined(_DEBUG) || !defined(NDEBUG)
  std::string debug_or_optimize("Compiled in debug mode.");
#else
     std::string debug_or_optimize("Compiled in optimise mode.");
#endif

  // Create filename for roots_table
  std::string qbk_name = full_roots_name;
  qbk_name += "roots_table";

  std::stringstream ss;
  ss.precision(3);
  // ss << "_" << N // now put all the tables in one .qbk file?
    ss << "_" << digits_accuracy * 100
    << std::flush;
  // Assume only save optimize mode runs, so don't add any  _DEBUG info.
  qbk_name += ss.str();

#ifdef _MSC_VER
  qbk_name += "_msvc";
#else // assume GCC
  qbk_name += "_gcc";
#endif 
  if (fp_hardware != "")
  {
    qbk_name += fp_hardware;
  }
  qbk_name += ".qbk";

  fout.open(qbk_name, std::ios_base::out);

  if (fout.is_open())
  {
    std::cout << "Output root table to " << qbk_name << std::endl;
  }
  else
  { // Failed to open.
    std::cout << " Open file " << qbk_name << " for output failed!" << std::endl;
    std::cout << "errno " << errno << std::endl;
    return errno;
  }

  fout <<
    "[/"
    << qbk_name
    << "\n"
    "Copyright 2015 Paul A. Bristow.""\n"
    "Copyright 2015 John Maddock.""\n"
    "Distributed under the Boost Software License, Version 1.0.""\n"
    "(See accompanying file LICENSE_1_0.txt or copy at""\n"
    "http://www.boost.org/LICENSE_1_0.txt).""\n"
    "]""\n"
    << std::endl;

  // Print out the program/compiler/stdlib/platform names as a Quickbook comment:
  fout << "\n[h6 Program " << sourcefilename << ",\n "
    << BOOST_COMPILER << ", "
    << BOOST_STDLIB << ", "
    << BOOST_PLATFORM << "\n"
    << debug_or_optimize 
    << ((fp_hardware != "") ? ", " + fp_hardware : "")
    << "]" // [h6 close].
    << std::endl;

  fout << "Fraction of full accuracy " << digits_accuracy << std::endl;

  table_root_info<5>(full_value);
  table_root_info<7>(full_value);
  table_root_info<11>(full_value);

  fout.close();

  //   table_type_info(digits_accuracy);

  return 0;
} // roots_tables


int main()
{
  using namespace boost::multiprecision;
  using namespace boost::math;


  try
  {
    std::cout << "Tests run with " << BOOST_COMPILER << ", "
      << BOOST_STDLIB << ", " << BOOST_PLATFORM << ", ";

// How to: Configure Visual C++ Projects to Target 64-Bit Platforms
// https://msdn.microsoft.com/en-us/library/9yb4317s.aspx

#ifdef _M_X64 // Defined for compilations that target x64 processors.
    std::cout << "X64 " << std::endl;
    fp_hardware += "_X64";
#else
#  ifdef _M_IX86
     std::cout << "X32 " << std::endl;
     fp_hardware += "_X86";
#  endif
#endif

#ifdef _M_AMD64
    std::cout << "AMD64 " << std::endl;
 //   fp_hardware += "_AMD64";
#endif

// https://msdn.microsoft.com/en-us/library/7t5yh4fd.aspx  
// /arch (x86) options /arch:[IA32|SSE|SSE2|AVX|AVX2]
// default is to use SSE and SSE2 instructions by default.
// https://msdn.microsoft.com/en-us/library/jj620901.aspx
// /arch (x64) options /arch:AVX and /arch:AVX2

// MSVC doesn't bother to set these SSE macros!
// http://stackoverflow.com/questions/18563978/sse-sse2-is-enabled-control-in-visual-studio
// https://msdn.microsoft.com/en-us/library/b0084kay.aspx  predefined macros.

// But some of these macros are *not* defined by MSVC, 
// unlike AVX (but *are* defined by GCC and Clang). 
// So the macro code above does define them.
#if (defined(_M_AMD64) || defined (_M_X64))
#ifndef _M_X64
#  define _M_X64
#endif
#ifndef __SSE2__
#  define __SSE2__
#endif
#else
#  ifdef _M_IX86_FP // Expands to an integer literal value indicating which /arch compiler option was used:
    std::cout << "Floating-point _M_IX86_FP = " << _M_IX86_FP << std::endl;
#  if (_M_IX86_FP == 2) // 2 if /arch:SSE2, /arch:AVX or /arch:AVX2 
#    define __SSE2__ // x32
#  elif (_M_IX86_FP == 1) // 1 if /arch:SSE was used.
#    define __SSE__ // x32
#  elif (_M_IX86_FP == 0) // 0 if /arch:IA32 was used.
#    define _X32 // No special FP instructions.
#  endif
# endif
#endif
// Set the fp_hardware that is used in the .qbk filename.
#ifdef __AVX2__
    std::cout << "Floating-point AVX2 " << std::endl;
    fp_hardware += "_AVX2";
#  else 
#    ifdef __AVX__
    std::cout << "Floating-point AVX " << std::endl;
    fp_hardware += "_AVX";
#    else
#      ifdef __SSE2__
    std::cout << "Floating-point SSE2 " << std::endl;
    fp_hardware += "_SSE2";
#      else
#        ifdef __SSE__
    std::cout << "Floating-point SSE " << std::endl;
    fp_hardware += "_SSE";
#        endif
#      endif
#   endif
# endif

#ifdef _M_IX86
    std::cout << "Floating-point X86 _M_IX86 = " << _M_IX86 << std::endl;
    // https://msdn.microsoft.com/en-us/library/aa273918%28v=vs.60%29.aspx#_predir_table_1..3
    // 600 = Pentium Pro
#endif

#ifdef _MSC_FULL_VER
    std::cout << "Floating-point _MSC_FULL_VER " << _MSC_FULL_VER << std::endl;
#endif

#ifdef __MSVC_RUNTIME_CHECKS
    std::cout << "Runtime __MSVC_RUNTIME_CHECKS " << std::endl;
#endif

    BOOST_MATH_CONTROL_FP;

    cpp_bin_float_100 full_value("28.");
    // Compute full answer to more than precision of tests.
    //T value = 28.; // integer (exactly representable as floating-point)
    // whose cube root is *not* exactly representable.
    // Wolfram Alpha command N[28 ^ (1 / 3), 100] computes cube root to 100 decimal digits.
    // 3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895

    std::cout.precision(100);
    std::cout << "value " << full_value << std::endl;
   // std::cout << ",\n""answer = " << full_answer << std::endl;
    std::cout.precision(6);
   // cbrt cpp_bin_float_100 full_answer("3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895");

    // Output the table of types, maxdigits10 and digits and required digits for some accuracies.

    // Output tables for some roots at full accuracy.
    roots_tables(full_value, 1.);

    // Output tables for some roots at less accuracy.
    //roots_tables(full_value, 0.75);

    return boost::exit_success;
  }
  catch (std::exception const& ex)
  {
    std::cout << "exception thrown: " << ex.what() << std::endl;
    return boost::exit_failure;
  }
} // int main()

/*

*/