File: chebyshev_transform_test.cpp

package info (click to toggle)
boost1.88 1.88.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 576,932 kB
  • sloc: cpp: 4,149,234; xml: 136,789; ansic: 35,092; python: 33,910; asm: 5,698; sh: 4,604; ada: 1,681; makefile: 1,633; pascal: 1,139; perl: 1,124; sql: 640; yacc: 478; ruby: 271; java: 77; lisp: 24; csh: 6
file content (220 lines) | stat: -rw-r--r-- 6,686 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
 * Copyright Nick Thompson, 2017
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 */
#include "math_unit_test.hpp"
#include <boost/type_index.hpp>
#include <boost/math/special_functions/chebyshev.hpp>
#include <boost/math/special_functions/chebyshev_transform.hpp>
#include <boost/math/special_functions/sinc.hpp>
#include <boost/math/tools/test_value.hpp>

#if !defined(TEST1) && !defined(TEST2) && !defined(TEST3) && !defined(TEST4)
#  define TEST1
#  define TEST2
#  define TEST3
#  define TEST4
#endif

using boost::math::chebyshev_t;
using boost::math::chebyshev_t_prime;
using boost::math::chebyshev_u;
using boost::math::chebyshev_transform;


template<class Real>
void test_sin_chebyshev_transform()
{
    using boost::math::chebyshev_transform;
    using boost::math::constants::half_pi;
    using std::sin;
    using std::cos;
    using std::abs;

    Real tol = std::numeric_limits<Real>::epsilon();
    auto f = [](Real x)->Real { return sin(x); };
    Real a = 0;
    Real b = 1;
    chebyshev_transform<Real> cheb(f, a, b, tol);

    Real x = a;
    while (x < b)
    {
        Real s = sin(x);
        Real c = cos(x);
        CHECK_ABSOLUTE_ERROR(s, cheb(x), tol);
        CHECK_ABSOLUTE_ERROR(c, cheb.prime(x), 150*tol);
        x += static_cast<Real>(1)/static_cast<Real>(1 << 7);
    }

    Real Q = cheb.integrate();

    CHECK_ABSOLUTE_ERROR(1 - cos(static_cast<Real>(1)), Q, 100*tol);
}


template<class Real>
void test_sinc_chebyshev_transform()
{
    using std::cos;
    using std::sin;
    using std::abs;
    using boost::math::sinc_pi;
    using boost::math::chebyshev_transform;
    using boost::math::constants::half_pi;

    Real tol = 100*std::numeric_limits<Real>::epsilon();
    auto f = [](Real x) { return boost::math::sinc_pi(x); };
    Real a = 0;
    Real b = 1;
    chebyshev_transform<Real> cheb(f, a, b, tol/50);

    Real x = a;
    while (x < b)
    {
        Real s = sinc_pi(x);
        Real ds = (cos(x)-sinc_pi(x))/x;
        if (x == 0) { ds = 0; }

        CHECK_ABSOLUTE_ERROR(s, cheb(x), tol);
        CHECK_ABSOLUTE_ERROR(ds, cheb.prime(x), 10*tol);
        x += static_cast<Real>(1)/static_cast<Real>(1 << 7);
    }

    Real Q = cheb.integrate();
    //NIntegrate[Sinc[x], {x, 0, 1}, WorkingPrecision -> 200, AccuracyGoal -> 150, PrecisionGoal -> 150, MaxRecursion -> 150]
    Real Q_exp = BOOST_MATH_TEST_VALUE(Real, 0.94608307036718301494135331382317965781233795473811179047145477356668);
    CHECK_ABSOLUTE_ERROR(Q_exp, Q, tol);
}



//Examples taken from "Approximation Theory and Approximation Practice", by Trefethen
template<class Real>
void test_atap_examples()
{
    using std::sin;
    using std::exp;
    using std::sqrt;
    using boost::math::constants::half;
    using boost::math::sinc_pi;
    using boost::math::chebyshev_transform;
    using boost::math::constants::half_pi;

    Real tol = 10*std::numeric_limits<Real>::epsilon();
    auto f1 = [](Real x) { return ((0 < x) - (x < 0)) - x/2; };
    auto f2 = [](Real x) { Real t = sin(6*x); Real s = sin(x + exp(2*x));
                           Real u = (0 < s) - (s < 0);
                           return t + u; };

    //auto f3 = [](Real x) { return sin(6*x) + sin(60*exp(x)); };
    //auto f4 = [](Real x) { return 1/(1+1000*(x+half<Real>())*(x+half<Real>())) + 1/sqrt(1+1000*(x-Real(1)/Real(2))*(x-Real(1)/Real(2)));};
    Real a = -1;
    Real b = 1;
    chebyshev_transform<Real> cheb1(f1, a, b, tol);
    chebyshev_transform<Real> cheb2(f2, a, b, tol);
    //chebyshev_transform<Real> cheb3(f3, a, b, tol);

    Real x = a;
    while (x < b)
    {
        // f1 and f2 are not differentiable; standard convergence rate theorems don't apply.
        // Basically, the max refinements are always hit; so the error is not related to the precision of the type.
        Real acceptable_error = sqrt(tol);
        Real acceptable_error_2 = 9e-4;
        if (std::is_same<Real, long double>::value)
        {
            acceptable_error = 1.6e-5;
        }
        if (std::is_same<Real, double>::value)
        {
            acceptable_error *= 500;
        }
        CHECK_ABSOLUTE_ERROR(f1(x), cheb1(x), acceptable_error);

        CHECK_ABSOLUTE_ERROR(f2(x), cheb2(x), acceptable_error_2);
        x += static_cast<Real>(1)/static_cast<Real>(1 << 7);
    }
}


//Validate that the Chebyshev polynomials are well approximated by the Chebyshev transform.
template<class Real>
void test_chebyshev_chebyshev_transform()
{
    Real tol = 500*std::numeric_limits<Real>::epsilon();
    // T_0 = 1:
    auto t0 = [](Real) { return 1; };
    chebyshev_transform<Real> cheb0(t0, -1, 1);
    CHECK_ABSOLUTE_ERROR(2, cheb0.coefficients()[0], tol);

    Real x = -1;
    while (x < 1)
    {
        CHECK_ABSOLUTE_ERROR(1, cheb0(x), tol);
        CHECK_ABSOLUTE_ERROR(Real(0), cheb0.prime(x), tol);
        x += static_cast<Real>(1)/static_cast<Real>(1 << 7);
    }

    // T_1 = x:
    auto t1 = [](Real x) { return x; };
    chebyshev_transform<Real> cheb1(t1, -1, 1);
    CHECK_ABSOLUTE_ERROR(Real(1), cheb1.coefficients()[1], tol);

    x = -1;
    while (x < 1)
    {
        CHECK_ABSOLUTE_ERROR(x, cheb1(x), tol);
        CHECK_ABSOLUTE_ERROR(Real(1), cheb1.prime(x), tol);
        x += static_cast<Real>(1)/static_cast<Real>(1 << 7);
    }


    auto t2 = [](Real x) { return 2*x*x-1; };
    chebyshev_transform<Real> cheb2(t2, -1, 1);
    CHECK_ABSOLUTE_ERROR(Real(1), cheb2.coefficients()[2], tol);

    x = -1;
    while (x < 1)
    {
        CHECK_ABSOLUTE_ERROR(t2(x), cheb2(x), tol);
        CHECK_ABSOLUTE_ERROR(4*x, cheb2.prime(x), tol);
        x += static_cast<Real>(1)/static_cast<Real>(1 << 7);
    }
}

int main()
{
#ifdef TEST1
    test_chebyshev_chebyshev_transform<float>();
    test_sin_chebyshev_transform<float>();
    test_atap_examples<float>();
    test_sinc_chebyshev_transform<float>();
#endif
#ifdef TEST2
    test_chebyshev_chebyshev_transform<double>();
    test_sin_chebyshev_transform<double>();
    test_atap_examples<double>();
    test_sinc_chebyshev_transform<double>();
#endif
#ifdef TEST3
    test_chebyshev_chebyshev_transform<long double>();
    test_sin_chebyshev_transform<long double>();
    test_atap_examples<long double>();
    test_sinc_chebyshev_transform<long double>();
#endif
#ifdef TEST4
#ifdef BOOST_HAS_FLOAT128
    test_chebyshev_chebyshev_transform<__float128>();
    test_sin_chebyshev_transform<__float128>();
    test_atap_examples<__float128>();
    test_sinc_chebyshev_transform<__float128>();
#endif
#endif

    return boost::math::test::report_errors();
}