1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
// Copyright Nick Thompson, 2017
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_TEST_MODULE Gauss Kronrod_quadrature_test
#include <complex>
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#if !defined(BOOST_NO_CXX11_DECLTYPE) && !defined(BOOST_NO_CXX11_TRAILING_RESULT_TYPES) && !defined(BOOST_NO_SFINAE_EXPR)
#include <boost/math/concepts/real_concept.hpp>
#include <boost/type_index.hpp>
#include <boost/math/tools/test_value.hpp>
#include <boost/test/included/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/quadrature/gauss_kronrod.hpp>
#include <boost/math/special_functions/sinc.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/debug_adaptor.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/complex128.hpp>
#endif
#if !defined(TEST1) && !defined(TEST1A) && !defined(TEST2) && !defined(TEST3)
# define TEST1
# define TEST1A
# define TEST2
# define TEST3
#endif
#ifdef _MSC_VER
#pragma warning(disable:4127) // Conditional expression is constant
#endif
#if __has_include(<stdfloat>)
# include <stdfloat>
#endif
using std::expm1;
using std::atan;
using std::tan;
using std::log;
using std::log1p;
using std::asinh;
using std::atanh;
using std::sqrt;
using std::isnormal;
using std::abs;
using std::sinh;
using std::tanh;
using std::cosh;
using std::pow;
using std::exp;
using std::sin;
using std::cos;
using std::string;
using boost::math::quadrature::gauss_kronrod;
using boost::math::constants::pi;
using boost::math::constants::half_pi;
using boost::math::constants::two_div_pi;
using boost::math::constants::two_pi;
using boost::math::constants::half;
using boost::math::constants::third;
using boost::math::constants::half;
using boost::math::constants::third;
using boost::math::constants::catalan;
using boost::math::constants::ln_two;
using boost::math::constants::root_two;
using boost::math::constants::root_two_pi;
using boost::math::constants::root_pi;
using boost::multiprecision::cpp_bin_float_quad;
using boost::multiprecision::cpp_dec_float_50;
using boost::multiprecision::debug_adaptor;
using boost::multiprecision::number;
//
// Error rates depend only on the number of points in the approximation, not the type being tested,
// define all our expected errors here:
//
enum
{
test_ca_error_id,
test_ca_error_id_2,
test_three_quad_error_id,
test_three_quad_error_id_2,
test_integration_over_real_line_error_id,
test_right_limit_infinite_error_id,
test_left_limit_infinite_error_id
};
template <unsigned Points>
double expected_error(unsigned)
{
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<15>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 1e-7;
case test_ca_error_id_2:
return 2e-5;
case test_three_quad_error_id:
return 1e-8;
case test_three_quad_error_id_2:
return 3.5e-3;
case test_integration_over_real_line_error_id:
return 6e-3;
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 1e-5;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<17>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 1e-7;
case test_ca_error_id_2:
return 2e-5;
case test_three_quad_error_id:
return 1e-8;
case test_three_quad_error_id_2:
return 3.5e-3;
case test_integration_over_real_line_error_id:
return 6e-3;
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 1e-5;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<21>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 1e-12;
case test_ca_error_id_2:
return 3e-6;
case test_three_quad_error_id:
return 2e-13;
case test_three_quad_error_id_2:
return 2e-3;
case test_integration_over_real_line_error_id:
return 6e-3; // doesn't get any better with more points!
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 5e-8;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<31>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 6e-20;
case test_ca_error_id_2:
return 3e-7;
case test_three_quad_error_id:
return 1e-19;
case test_three_quad_error_id_2:
return 6e-4;
case test_integration_over_real_line_error_id:
return 6e-3; // doesn't get any better with more points!
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 5e-11;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<41>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 1e-26;
case test_ca_error_id_2:
return 1e-7;
case test_three_quad_error_id:
return 3e-27;
case test_three_quad_error_id_2:
return 3e-4;
case test_integration_over_real_line_error_id:
return 5e-5; // doesn't get any better with more points!
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 1e-15;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<51>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 5e-33;
case test_ca_error_id_2:
return 1e-8;
case test_three_quad_error_id:
return 1e-32;
case test_three_quad_error_id_2:
return 3e-4;
case test_integration_over_real_line_error_id:
return 1e-14;
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 3e-19;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<61>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 5e-34;
case test_ca_error_id_2:
return 5e-9;
case test_three_quad_error_id:
return 4e-34;
case test_three_quad_error_id_2:
return 1e-4;
case test_integration_over_real_line_error_id:
return 1e-16;
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 3e-23;
}
return 0; // placeholder, all tests will fail
}
template<class Real, unsigned Points>
void test_linear()
{
std::cout << "Testing linear functions are integrated properly by gauss_kronrod on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = boost::math::tools::epsilon<Real>() * 10;
Real error;
auto f = [](const Real& x)->Real
{
return 5*x + 7;
};
Real L1;
Real Q = gauss_kronrod<Real, Points>::integrate(f, (Real) 0, (Real) 1, 0, 0, &error, &L1);
BOOST_CHECK_CLOSE_FRACTION(Q, 9.5, tol);
BOOST_CHECK_CLOSE_FRACTION(L1, 9.5, tol);
Q = gauss_kronrod<Real, Points>::integrate(f, (Real) 1, (Real) 0, 0, 0, &error, &L1);
BOOST_CHECK_CLOSE_FRACTION(Q, -9.5, tol);
BOOST_CHECK_CLOSE_FRACTION(L1, 9.5, tol);
Q = gauss_kronrod<Real, Points>::integrate(f, (Real) 0, (Real) 0, 0, 0, &error, &L1);
BOOST_CHECK_CLOSE(Q, Real(0), tol);
}
template<class Real, unsigned Points>
void test_quadratic()
{
std::cout << "Testing quadratic functions are integrated properly by Gauss Kronrod on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = boost::math::tools::epsilon<Real>() * 10;
Real error;
auto f = [](const Real& x)->Real { return 5*x*x + 7*x + 12; };
Real L1;
Real Q = gauss_kronrod<Real, Points>::integrate(f, 0, 1, 0, 0, &error, &L1);
BOOST_CHECK_CLOSE_FRACTION(Q, (Real) 17 + half<Real>()*third<Real>(), tol);
BOOST_CHECK_CLOSE_FRACTION(L1, (Real) 17 + half<Real>()*third<Real>(), tol);
}
// Examples taken from
//http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/quadrature.pdf
template<class Real, unsigned Points>
void test_ca()
{
std::cout << "Testing integration of C(a) on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = expected_error<Points>(test_ca_error_id);
Real L1;
Real error;
auto f1 = [](const Real& x)->Real { return atan(x)/(x*(x*x + 1)) ; };
Real Q = gauss_kronrod<Real, Points>::integrate(f1, 0, 1, 0, 0, &error, &L1);
Real Q_expected = pi<Real>()*ln_two<Real>()/8 + catalan<Real>()*half<Real>();
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
auto f2 = [](Real x)->Real { Real t0 = x*x + 1; Real t1 = sqrt(t0); return atan(t1)/(t0*t1); };
Q = gauss_kronrod<Real, Points>::integrate(f2, 0 , 1, 0, 0, &error, &L1);
Q_expected = pi<Real>()/4 - pi<Real>()/root_two<Real>() + 3*atan(root_two<Real>())/root_two<Real>();
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
tol = expected_error<Points>(test_ca_error_id_2);
auto f5 = [](Real t)->Real { return t*t*log(t)/((t*t - 1)*(t*t*t*t + 1)); };
Q = gauss_kronrod<Real, Points>::integrate(f5, 0, 1, 0);
Q_expected = pi<Real>()*pi<Real>()*(2 - root_two<Real>())/32;
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
}
template<class Real, unsigned Points>
void test_three_quadrature_schemes_examples()
{
std::cout << "Testing integral in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = expected_error<Points>(test_three_quad_error_id);
Real Q;
Real Q_expected;
// Example 1:
auto f1 = [](const Real& t)->Real { return t*boost::math::log1p(t); };
Q = gauss_kronrod<Real, Points>::integrate(f1, 0 , 1, 0);
Q_expected = half<Real>()*half<Real>();
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
// Example 2:
auto f2 = [](const Real& t)->Real { return t*t*atan(t); };
Q = gauss_kronrod<Real, Points>::integrate(f2, 0 , 1, 0);
Q_expected = (pi<Real>() -2 + 2*ln_two<Real>())/12;
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, 2 * tol);
// Example 3:
auto f3 = [](const Real& t)->Real { return exp(t)*cos(t); };
Q = gauss_kronrod<Real, Points>::integrate(f3, 0, half_pi<Real>(), 0);
Q_expected = boost::math::expm1(half_pi<Real>())*half<Real>();
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
// Example 4:
auto f4 = [](Real x)->Real { Real t0 = sqrt(x*x + 2); return atan(t0)/(t0*(x*x+1)); };
Q = gauss_kronrod<Real, Points>::integrate(f4, 0 , 1, 0);
Q_expected = 5*pi<Real>()*pi<Real>()/96;
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
tol = expected_error<Points>(test_three_quad_error_id_2);
// Example 5:
auto f5 = [](const Real& t)->Real { return sqrt(t)*log(t); };
Q = gauss_kronrod<Real, Points>::integrate(f5, 0 , 1, 0);
Q_expected = -4/ (Real) 9;
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
// Example 6:
auto f6 = [](const Real& t)->Real { return sqrt(1 - t*t); };
Q = gauss_kronrod<Real, Points>::integrate(f6, 0 , 1, 0);
Q_expected = pi<Real>()/4;
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
}
template<class Real, unsigned Points>
void test_integration_over_real_line()
{
std::cout << "Testing integrals over entire real line in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = expected_error<Points>(test_integration_over_real_line_error_id);
Real Q;
Real Q_expected;
Real L1;
Real error;
auto f1 = [](const Real& t)->Real { return 1/(1+t*t);};
Q = gauss_kronrod<Real, Points>::integrate(f1, -boost::math::tools::max_value<Real>(), boost::math::tools::max_value<Real>(), 0, 0, &error, &L1);
Q_expected = pi<Real>();
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
}
template<class Real, unsigned Points>
void test_right_limit_infinite()
{
std::cout << "Testing right limit infinite for Gauss Kronrod in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = expected_error<Points>(test_right_limit_infinite_error_id);
Real Q;
Real Q_expected;
Real L1;
Real error;
// Example 11:
auto f1 = [](const Real& t)->Real { return 1/(1+t*t);};
Q = gauss_kronrod<Real, Points>::integrate(f1, 0, boost::math::tools::max_value<Real>(), 0, 0, &error, &L1);
Q_expected = half_pi<Real>();
BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
auto f4 = [](const Real& t)->Real { return 1/(1+t*t); };
Q = gauss_kronrod<Real, Points>::integrate(f4, 1, boost::math::tools::max_value<Real>(), 0, 0, &error, &L1);
Q_expected = pi<Real>()/4;
BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
}
template<class Real, unsigned Points>
void test_left_limit_infinite()
{
std::cout << "Testing left limit infinite for Gauss Kronrod in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = expected_error<Points>(test_left_limit_infinite_error_id);
Real Q;
Real Q_expected;
// Example 11:
auto f1 = [](const Real& t)->Real { return 1/(1+t*t);};
Q = gauss_kronrod<Real, Points>::integrate(f1, -boost::math::tools::max_value<Real>(), Real(0), 0);
Q_expected = half_pi<Real>();
BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
}
template<class Complex>
void test_complex_lambert_w()
{
std::cout << "Testing that complex-valued integrands are integrated correctly by Gaussian quadrature on type " << boost::typeindex::type_id<Complex>().pretty_name() << "\n";
typedef typename Complex::value_type Real;
Real tol = 10e-9;
using boost::math::constants::pi;
Complex z{2, 3};
auto lw = [&z](Real v)->Complex {
using std::cos;
using std::sin;
using std::exp;
Real sinv = sin(v);
Real cosv = cos(v);
Real cotv = cosv/sinv;
Real cscv = 1/sinv;
Real t = (1-v*cotv)*(1-v*cotv) + v*v;
Real x = v*cscv*exp(-v*cotv);
Complex den = z + x;
Complex num = t*(z/pi<Real>());
Complex res = num/den;
return res;
};
//N[ProductLog[2+3*I], 150]
boost::math::quadrature::gauss_kronrod<Real, 61> integrator;
Complex Q = integrator.integrate(lw, (Real) 0, pi<Real>());
BOOST_CHECK_CLOSE_FRACTION(Q.real(), BOOST_MATH_TEST_VALUE(Real, 1.0900765344857908463017778267816696498710210863535777805644), tol);
BOOST_CHECK_CLOSE_FRACTION(Q.imag(), BOOST_MATH_TEST_VALUE(Real, 0.5301397207748388014268602135741217419287056313827031782979), tol);
}
BOOST_AUTO_TEST_CASE(gauss_quadrature_test)
{
#ifdef TEST1
std::cout << "Testing 15 point approximation:\n";
#ifdef __STDCPP_FLOAT64_T__
test_linear<std::float64_t, 15>();
test_quadratic<std::float64_t, 15>();
test_ca<std::float64_t, 15>();
test_three_quadrature_schemes_examples<std::float64_t, 15>();
test_integration_over_real_line<std::float64_t, 15>();
test_right_limit_infinite<std::float64_t, 15>();
test_left_limit_infinite<std::float64_t, 15>();
#else
test_linear<double, 15>();
test_quadratic<double, 15>();
test_ca<double, 15>();
test_three_quadrature_schemes_examples<double, 15>();
test_integration_over_real_line<double, 15>();
test_right_limit_infinite<double, 15>();
test_left_limit_infinite<double, 15>();
#endif
// test one case where we do not have pre-computed constants:
std::cout << "Testing 17 point approximation:\n";
#ifdef __STDCPP_FLOAT64_T__
test_linear<std::float64_t, 17>();
test_quadratic<std::float64_t, 17>();
test_ca<std::float64_t, 17>();
test_three_quadrature_schemes_examples<std::float64_t, 17>();
test_integration_over_real_line<std::float64_t, 17>();
test_right_limit_infinite<std::float64_t, 17>();
test_left_limit_infinite<std::float64_t, 17>();
#else
test_linear<double, 17>();
test_quadratic<double, 17>();
test_ca<double, 17>();
test_three_quadrature_schemes_examples<double, 17>();
test_integration_over_real_line<double, 17>();
test_right_limit_infinite<double, 17>();
test_left_limit_infinite<double, 17>();
#endif
test_complex_lambert_w<std::complex<double>>();
test_complex_lambert_w<std::complex<long double>>();
#endif
#ifdef TEST1A
#if LDBL_MANT_DIG < 100 && defined(BOOST_MATH_RUN_MP_TESTS) // If we have too many digits in a long double, we get build errors due to a constexpr issue.
std::cout << "Testing 21 point approximation:\n";
test_linear<cpp_bin_float_quad, 21>();
test_quadratic<cpp_bin_float_quad, 21>();
test_ca<cpp_bin_float_quad, 21>();
test_three_quadrature_schemes_examples<cpp_bin_float_quad, 21>();
test_integration_over_real_line<cpp_bin_float_quad, 21>();
test_right_limit_infinite<cpp_bin_float_quad, 21>();
test_left_limit_infinite<cpp_bin_float_quad, 21>();
std::cout << "Testing 31 point approximation:\n";
test_linear<cpp_bin_float_quad, 31>();
test_quadratic<cpp_bin_float_quad, 31>();
test_ca<cpp_bin_float_quad, 31>();
test_three_quadrature_schemes_examples<cpp_bin_float_quad, 31>();
test_integration_over_real_line<cpp_bin_float_quad, 31>();
test_right_limit_infinite<cpp_bin_float_quad, 31>();
test_left_limit_infinite<cpp_bin_float_quad, 31>();
#endif
#endif
#ifdef TEST2
#if LDBL_MANT_DIG < 100 && defined(BOOST_MATH_RUN_MP_TESTS) // If we have too many digits in a long double, we get build errors due to a constexpr issue.
std::cout << "Testing 41 point approximation:\n";
test_linear<cpp_bin_float_quad, 41>();
test_quadratic<cpp_bin_float_quad, 41>();
test_ca<cpp_bin_float_quad, 41>();
test_three_quadrature_schemes_examples<cpp_bin_float_quad, 41>();
test_integration_over_real_line<cpp_bin_float_quad, 41>();
test_right_limit_infinite<cpp_bin_float_quad, 41>();
test_left_limit_infinite<cpp_bin_float_quad, 41>();
std::cout << "Testing 51 point approximation:\n";
test_linear<cpp_bin_float_quad, 51>();
test_quadratic<cpp_bin_float_quad, 51>();
test_ca<cpp_bin_float_quad, 51>();
test_three_quadrature_schemes_examples<cpp_bin_float_quad, 51>();
test_integration_over_real_line<cpp_bin_float_quad, 51>();
test_right_limit_infinite<cpp_bin_float_quad, 51>();
test_left_limit_infinite<cpp_bin_float_quad, 51>();
#endif
#endif
#if defined(TEST3) && defined(BOOST_MATH_RUN_MP_TESTS)
// Need at least one set of tests with expression templates turned on:
std::cout << "Testing 61 point approximation:\n";
test_linear<cpp_dec_float_50, 61>();
test_quadratic<cpp_dec_float_50, 61>();
test_ca<cpp_dec_float_50, 61>();
test_three_quadrature_schemes_examples<cpp_dec_float_50, 61>();
test_integration_over_real_line<cpp_dec_float_50, 61>();
test_right_limit_infinite<cpp_dec_float_50, 61>();
test_left_limit_infinite<cpp_dec_float_50, 61>();
#ifdef BOOST_HAS_FLOAT128
#if LDBL_MANT_DIG < 100 // If we have too many digits in a long double, we get build errors due to a constexpr issue.
test_complex_lambert_w<boost::multiprecision::complex128>();
#endif
#endif
#endif
}
#else
int main() { return 0; }
#endif
|