1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
// Copyright (c) 2013 Anton Bikineev
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include <boost/math/concepts/real_concept.hpp>
#include "handle_test_result.hpp"
#include "table_type.hpp"
#ifndef SC_
# define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
#endif
template <class Real, class T>
void do_test_cyl_neumann_y_prime(const T& data, const char* type_name, const char* test_name)
{
#if !(defined(ERROR_REPORTING_MODE) && !defined(BESSEL_YP_FUNCTION_TO_TEST))
typedef Real value_type;
typedef value_type (*pg)(value_type, value_type);
#ifdef BESSEL_YP_FUNCTION_TO_TEST
pg funcp = BESSEL_YP_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = boost::math::cyl_neumann_prime<value_type, value_type>;
#else
pg funcp = boost::math::cyl_neumann_prime;
#endif
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
#include <boost/math/concepts/real_concept.hpp>
//
// test cyl_neumann against data:
//
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1),
extract_result<Real>(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "cyl_neumann_prime", test_name);
std::cout << std::endl;
#endif
}
template <class T>
T cyl_neumann_prime_int_wrapper(T v, T x)
{
#ifdef BESSEL_YNP_FUNCTION_TO_TEST
return static_cast<T>(BESSEL_YNP_FUNCTION_TO_TEST(boost::math::itrunc(v), x));
#else
return static_cast<T>(boost::math::cyl_neumann_prime(boost::math::itrunc(v), x));
#endif
}
template <class Real, class T>
void do_test_cyl_neumann_y_prime_int(const T& data, const char* type_name, const char* test_name)
{
#if !(defined(ERROR_REPORTING_MODE) && !defined(BESSEL_YNP_FUNCTION_TO_TEST))
typedef Real value_type;
typedef value_type (*pg)(value_type, value_type);
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = cyl_neumann_prime_int_wrapper<value_type>;
#else
pg funcp = cyl_neumann_prime_int_wrapper;
#endif
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test cyl_neumann derivative against data:
//
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1),
extract_result<Real>(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "cyl_neumann_prime (integer orders)", test_name);
std::cout << std::endl;
#endif
}
template <class Real, class T>
void do_test_sph_neumann_y_prime(const T& data, const char* type_name, const char* test_name)
{
#if !(defined(ERROR_REPORTING_MODE) && !defined(BESSEL_YSP_FUNCTION_TO_TEST))
typedef Real value_type;
typedef value_type (*pg)(unsigned, value_type);
#ifdef BESSEL_YPS_FUNCTION_TO_TEST
pg funcp = BESSEL_YPS_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = boost::math::sph_neumann_prime<value_type>;
#else
pg funcp = boost::math::sph_neumann_prime;
#endif
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test sph_neumann against data:
//
result = boost::math::tools::test_hetero<Real>(
data,
bind_func_int1<Real>(funcp, 0, 1),
extract_result<Real>(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "sph_neumann_prime", test_name);
std::cout << std::endl;
#endif
}
template <class T>
void test_bessel_prime(T, const char* name)
{
using std::ldexp;
//
// The actual test data is rather verbose, so it's in a separate file
//
// The contents are as follows, each row of data contains
// three items, input value a, input value b and Y'(a, b):
//
// function values calculated on wolframalpha.com
static const std::array<std::array<typename table_type<T>::type, 3>, 9> y0_prime_data = {{
{{ SC_(0.0), SC_(1.0), SC_(0.7812128213002887165471500000479648205499063907164) }},
{{ SC_(0.0), SC_(2.0), SC_(0.1070324315409375468883707722774766366874808982351) }},
{{ SC_(0.0), SC_(4.0), SC_(-0.397925710557100005253979972450791852271189181623) }},
{{ SC_(0.0), SC_(8.0), SC_(0.15806046173124749425555526618748355032734404952671) }},
{{ SC_(0.0), SC_(1e-05), SC_(63661.97727536548515747484843924772510915025447869) }},
{{ SC_(0.0), SC_(1e-10), SC_(6.366197723675813431507891842844626117090808311905e9) }},
{{ SC_(0.0), SC_(1e-20), SC_(6.366197723675813430755350534900574482790569176554e19) }},
{{ SC_(0.0), SC_(1e+03), SC_(0.0247843312923517789148623560971412909386318548649) }},
{{ SC_(0.0), SC_(1e+05), SC_(-0.00171921035008825630099494523539897102954509505) }}
}};
static const std::array<std::array<typename table_type<T>::type, 3>, 9> y1_prime_data = {{
{{ SC_(1.0), SC_(1.0), SC_(0.8694697855159656745300767660714799833777239138071) }},
{{ SC_(1.0), SC_(2.0), SC_(0.5638918884202138930407919788658961916118796762034) }},
{{ SC_(1.0), SC_(4.0), SC_(-0.116422166964339993217130127559851181308289885304) }},
{{ SC_(1.0), SC_(8.0), SC_(0.24327904710397215730926780877205580306573293697226) }},
{{ SC_(1.0), SC_(1e-10), SC_(6.366197723675813430034640215574901912821641347643e19) }},
{{ SC_(1.0), SC_(1e-20), SC_(6.366197723675813430755350534900574481363849370436e39) }},
{{ SC_(1.0), SC_(1e+01), SC_(0.030769624862904003032131529943867767819086460209939) }},
{{ SC_(1.0), SC_(1e+03), SC_(0.004740702308915165178688123821762396300797636752) }},
{{ SC_(1.0), SC_(1e+05), SC_(0.00184674896676156322177773107486310726913857253) }}
}};
static const std::array<std::array<typename table_type<T>::type, 3>, 10> yn_prime_data = {{
{{ SC_(2.0), SC_(1e-20), SC_(2.546479089470325372302140213960229792551354331847e60) }},
{{ SC_(5.0), SC_(10.0), SC_(-0.21265103571277493482623417349611996600573875672875) }},
{{ SC_(-5.0), SC_(1e+06), SC_(0.00072596421871030053058120610033601018452750251) }},
{{ SC_(10.0), SC_(10.0), SC_(0.16051488637815838440809874678012991818716553338993) }},
{{ SC_(10.0), SC_(1e-10), SC_(1.1828049049433493390095436658120487349235941485975e119) }},
{{ SC_(-10.0), SC_(1e+06), SC_(-0.00033107967471992097725245404942310474516318425) }},
{{ SC_(1e+02), SC_(5.0), SC_(1.0156878983956300357005118672219842696133568692723e117) }},
{{ SC_(1e+03), SC_(1e+05), SC_(0.00128310308817651270517132752369325022363869159) }},
{{ SC_(-1e+03), SC_(7e+02), SC_(1.9243675144213106227065036295645482241938721428442e77) }},
{{ SC_(-25.0), SC_(8.0), SC_(-1.0191840913424144032043561764980932223038174827996e9) }}
}};
static const std::array<std::array<T, 3>, 11> yv_prime_data = {{
{{ SC_(0.5), T(1) / (1024*1024), SC_(4.283610118295381639304989276580713877375759e8) }},
{{ SC_(5.5), SC_(3.125), SC_(3.46903134947470280592767672475643312107258) }},
{{ SC_(-5.5), SC_(3.125), SC_(-0.04142495199637659623440832639970224440469) }},
{{ SC_(-5.5), SC_(1e+04), SC_(0.00245022241637437956702428797044365092097074) }},
{{ T(-10486074) / (1024*1024), T(1)/1024, SC_(1.539961618935582531021699399508514975292038639e42) }},
{{ T(-10486074) / (1024*1024), SC_(1e+02), SC_(-0.054782042073650048917092191171177791880141278121) }},
{{ SC_(141.75), SC_(1e+02), SC_(5.3859930471571245788582581390871501852536045509e9) }},
{{ SC_(141.75), SC_(2e+04), SC_(-0.0042010736481689878858599823347897260616269998902) }},
{{ SC_(-141.75), SC_(1e+02), SC_(3.8084722070683992315593455637944657331085673830e9) }},
{{ SC_(8.5), boost::math::constants::pi<T>() * 4, SC_(0.014516314554743677558496402742690038592727861) }},
{{ SC_(-8.5), boost::math::constants::pi<T>() * 4, SC_(-0.194590144622675911618596506265006877277073804) }},
}};
static const std::array<std::array<T, 3>, 7> yv_prime_large_data = {{
#if LDBL_MAX_10_EXP > 326
{{ SC_(0.5), static_cast<T>(std::ldexp(0.5, -683)), SC_(2.868703194735890254207338863894358862705699335892099e308) }},
#else
{{ SC_(0.5), static_cast<T>(std::ldexp(0.5, -400)), SC_(4.6822269214637968690651040333526494618220547616350e180) }},
#endif
{{ SC_(-0.5), static_cast<T>(std::ldexp(0.5, -683)), SC_(3.5741154998461284276309443770923823816821202344841e102) }},
{{ SC_(0.0), static_cast<T>(std::ldexp(1.0, -53)), SC_(5.73416113922265864550047623401604244038331542638719289e15) }},
{{ SC_(1.0), static_cast<T>(std::ldexp(1.0, -53)), SC_(5.164873193977108862252341626669725460073766e31) }},
{{ SC_(2.0), static_cast<T>(std::ldexp(1.0, -53)), SC_(1.8608416793448936781963026443824482966468761e48) }},
{{ SC_(3.0), static_cast<T>(std::ldexp(1.0, -53)), SC_(1.0056583072431781406772110820260315331263726e65) }},
{{ SC_(10.0), static_cast<T>(std::ldexp(1.0, -53)), SC_(3.74455823365114672304576809031094538692683400e184) }},
}};
do_test_cyl_neumann_y_prime<T>(y0_prime_data, name, "Y'0: Mathworld Data");
do_test_cyl_neumann_y_prime<T>(y1_prime_data, name, "Y'1: Mathworld Data");
do_test_cyl_neumann_y_prime<T>(yn_prime_data, name, "Y'n: Mathworld Data");
do_test_cyl_neumann_y_prime_int<T>(y0_prime_data, name, "Y'0: Mathworld Data (Integer Version)");
do_test_cyl_neumann_y_prime_int<T>(y1_prime_data, name, "Y'1: Mathworld Data (Integer Version)");
do_test_cyl_neumann_y_prime_int<T>(yn_prime_data, name, "Y'n: Mathworld Data (Integer Version)");
do_test_cyl_neumann_y_prime<T>(yv_prime_data, name, "Y'v: Mathworld Data");
if(yv_prime_large_data[0][1] != 0)
do_test_cyl_neumann_y_prime<T>(yv_prime_large_data, name, "Y'v: Mathworld Data (large values)");
#include "bessel_y01_prime_data.ipp"
do_test_cyl_neumann_y_prime<T>(bessel_y01_prime_data, name, "Y'0 and Y'1: Random Data");
#include "bessel_yn_prime_data.ipp"
do_test_cyl_neumann_y_prime<T>(bessel_yn_prime_data, name, "Y'n: Random Data");
#include "bessel_yv_prime_data.ipp"
do_test_cyl_neumann_y_prime<T>(bessel_yv_prime_data, name, "Y'v: Random Data");
#include "sph_neumann_prime_data.ipp"
do_test_sph_neumann_y_prime<T>(sph_neumann_prime_data, name, "y': Random Data");
//
// More cases for full test coverage:
//
BOOST_CHECK_THROW(boost::math::cyl_neumann_prime(T(2.5), T(0)), std::domain_error);
BOOST_CHECK_THROW(boost::math::cyl_neumann_prime(T(2.5), T(-1)), std::domain_error);
BOOST_CHECK_THROW(boost::math::sph_neumann_prime(2, T(0)), std::domain_error);
BOOST_CHECK_THROW(boost::math::sph_neumann_prime(2, T(-1)), std::domain_error);
BOOST_IF_CONSTEXPR(std::numeric_limits<T>::has_infinity && (std::numeric_limits<T>::min_exponent < -1072))
{
static const std::array<std::array<T, 3>, 5> yv_prime_coverage_data = { {
{{ SC_(170.25), SC_(2), SC_(4.1990285871978876642542582761856953686528755802132926772620e306) }},
#if LDBL_MAX_10_EXP > 4936
{{ SC_(14.25), ldexp(T(1), -1072), SC_(1.830622575805420777640505999291582751497710200210963689466e4936)}},
#else
{{ SC_(14.25), ldexp(T(1), -1072), std::numeric_limits<T>::infinity() }},
#endif
{{ SC_(14.25), ldexp(T(1), -1074), std::numeric_limits<T>::infinity() }},
{{ SC_(15.25), ldexp(T(1), -1074), std::numeric_limits<T>::infinity() }},
{{ SC_(30.25), ldexp(T(1), -1045), std::numeric_limits<T>::infinity() }},
} };
do_test_cyl_neumann_y_prime<T>(yv_prime_coverage_data, name, "y': Extra coverage data");
}
static const std::array<std::array<T, 3>, 1> sph_prime_coverage_data = { {
// (SphericalBesselY[-1, 5/2] - (SphericalBesselY(0, 5/2)+5/2 * SphericalBesselY[1, 5/2])/(5/2))/2
{{ SC_(0.0), SC_(2.5), SC_(0.1112058791540732032473814343996886423728680128280382077091151343) }},
} };
do_test_sph_neumann_y_prime<T>(sph_prime_coverage_data, name, "y': Extra coverage data");
}
|