File: test_ibeta_inv_ab.hpp

package info (click to toggle)
boost1.88 1.88.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 576,932 kB
  • sloc: cpp: 4,149,234; xml: 136,789; ansic: 35,092; python: 33,910; asm: 5,698; sh: 4,604; ada: 1,681; makefile: 1,633; pascal: 1,139; perl: 1,124; sql: 640; yacc: 478; ruby: 271; java: 77; lisp: 24; csh: 6
file content (241 lines) | stat: -rw-r--r-- 10,740 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007, 2009
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error

#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/beta.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/tools/stats.hpp>
#include "../include_private/boost/math/tools/test.hpp"
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"

#ifdef TEST_GSL
#include <gsl/gsl_errno.h>
#include <gsl/gsl_message.h>
#endif

#include "handle_test_result.hpp"
#include "table_type.hpp"

#ifndef SC_
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
#endif

template <class Real, class T>
void test_inverses(const T& data)
{
   using namespace std;
   //typedef typename T::value_type row_type;
   typedef Real                   value_type;

   value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
   if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
      precision = 1;   // 1% or two decimal digits, all we can hope for when the input is truncated

   for(unsigned i = 0; i < data.size(); ++i)
   {
      //
      // These inverse tests are thrown off if the output of the
      // incomplete beta is too close to 1: basically there is insuffient
      // information left in the value we're using as input to the inverse
      // to be able to get back to the original value.
      //
      if(Real(data[i][5]) == 0)
      {
         BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
         BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value<value_type>());
      }
      else if((1 - Real(data[i][5]) > 0.001) 
         && (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<value_type>()) 
         && (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<double>()))
      {
         value_type inv = boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5]));
         BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision);
         inv = boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5]));
         BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision);
      }
      else if(1 == Real(data[i][5]))
      {
         BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value<value_type>());
         BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
      }

      if(Real(data[i][6]) == 0)
      {
         BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value<value_type>());
         BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
      }
      else if((1 - Real(data[i][6]) > 0.001) 
         && (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<value_type>()) 
         && (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<double>()))
      {
         value_type inv = boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6]));
         BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision);
         inv = boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6]));
         BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision);
      }
      else if(Real(data[i][6]) == 1)
      {
         BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
         BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value<value_type>());
      }
   }
}

template <class Real, class T>
void test_inverses2(const T& data, const char* type_name, const char* test_name)
{
#if !(defined(ERROR_REPORTING_MODE) && !defined(IBETA_INVA_FUNCTION_TO_TEST))
   //typedef typename T::value_type row_type;
   typedef Real                   value_type;

   typedef value_type (*pg)(value_type, value_type, value_type);
#ifdef IBETA_INVA_FUNCTION_TO_TEST
   pg funcp = IBETA_INVA_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
   pg funcp = boost::math::ibeta_inva<value_type, value_type, value_type>;
#else
   pg funcp = boost::math::ibeta_inva;
#endif

   boost::math::tools::test_result<value_type> result;

   std::cout << "Testing " << test_name << " with type " << type_name
      << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";

   //
   // test ibeta_inva(T, T, T) against data:
   //
   result = boost::math::tools::test_hetero<Real>(
      data,
      bind_func<Real>(funcp, 0, 1, 2),
      extract_result<Real>(3));
   handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_inva", test_name);
   //
   // test ibetac_inva(T, T, T) against data:
   //
#ifdef IBETAC_INVA_FUNCTION_TO_TEST
   funcp = IBETAC_INVA_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
   funcp = boost::math::ibetac_inva<value_type, value_type, value_type>;
#else
   funcp = boost::math::ibetac_inva;
#endif
   result = boost::math::tools::test_hetero<Real>(
      data,
      bind_func<Real>(funcp, 0, 1, 2),
      extract_result<Real>(4));
   handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_inva", test_name);
   //
   // test ibeta_invb(T, T, T) against data:
   //
#ifdef IBETA_INVB_FUNCTION_TO_TEST
   funcp = IBETA_INVB_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
   funcp = boost::math::ibeta_invb<value_type, value_type, value_type>;
#else
   funcp = boost::math::ibeta_invb;
#endif
   result = boost::math::tools::test_hetero<Real>(
      data,
      bind_func<Real>(funcp, 0, 1, 2),
      extract_result<Real>(5));
   handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_invb", test_name);
   //
   // test ibetac_invb(T, T, T) against data:
   //
#ifdef IBETAC_INVB_FUNCTION_TO_TEST
   funcp = IBETAC_INVB_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
   funcp = boost::math::ibetac_invb<value_type, value_type, value_type>;
#else
   funcp = boost::math::ibetac_invb;
#endif
   result = boost::math::tools::test_hetero<Real>(
      data,
      bind_func<Real>(funcp, 0, 1, 2),
      extract_result<Real>(6));
   handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_invb", test_name);
#endif
}

template <class T>
void test_beta(T, const char* name)
{
#if !defined(ERROR_REPORTING_MODE)
   //
   // The actual test data is rather verbose, so it's in a separate file
   //
   // The contents are as follows, each row of data contains
   // five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
   //
   std::cout << "Running sanity checks for type " << name << std::endl;

#if !defined(TEST_DATA) || (TEST_DATA == 1)
#  include "ibeta_small_data.ipp"

   test_inverses<T>(ibeta_small_data);
#endif

#if !defined(TEST_DATA) || (TEST_DATA == 2)
#  include "ibeta_data.ipp"

   test_inverses<T>(ibeta_data);
#endif

#if !defined(TEST_DATA) || (TEST_DATA == 3)
#  include "ibeta_large_data.ipp"

   test_inverses<T>(ibeta_large_data);
#endif
#endif

#if !defined(TEST_REAL_CONCEPT) || defined(FULL_TEST) || (TEST_DATA == 4)
   if(boost::is_floating_point<T>::value){
   //
   // This accuracy test is normally only enabled for "real"
   // floating point types and not for class real_concept.
   // The reason is that these tests are exceptionally slow
   // to complete when T doesn't have Lanczos support defined for it.
   //
#  include "ibeta_inva_data.ipp"

   test_inverses2<T>(ibeta_inva_data, name, "Inverse incomplete beta");
   }
#endif
   //
   // Special spot tests and bug reports:
   //
   if (std::numeric_limits<T>::has_quiet_NaN)
   {
      T n = std::numeric_limits<T>::quiet_NaN();
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
   }
   if (std::numeric_limits<T>::has_infinity)
   {
      T n = std::numeric_limits<T>::infinity();
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(-n), static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(-n), static_cast<T>(0.125)), std::domain_error);
      BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), static_cast<T>(-n)), std::domain_error);
   }

}