1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007, 2009
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/beta.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/tools/stats.hpp>
#include "../include_private/boost/math/tools/test.hpp"
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#ifdef TEST_GSL
#include <gsl/gsl_errno.h>
#include <gsl/gsl_message.h>
#endif
#include "handle_test_result.hpp"
#include "table_type.hpp"
#ifndef SC_
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
#endif
template <class Real, class T>
void test_inverses(const T& data)
{
using namespace std;
//typedef typename T::value_type row_type;
typedef Real value_type;
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated
for(unsigned i = 0; i < data.size(); ++i)
{
//
// These inverse tests are thrown off if the output of the
// incomplete beta is too close to 1: basically there is insuffient
// information left in the value we're using as input to the inverse
// to be able to get back to the original value.
//
if(Real(data[i][5]) == 0)
{
BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value<value_type>());
}
else if((1 - Real(data[i][5]) > 0.001)
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<value_type>())
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<double>()))
{
value_type inv = boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5]));
BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision);
inv = boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5]));
BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision);
}
else if(1 == Real(data[i][5]))
{
BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
}
if(Real(data[i][6]) == 0)
{
BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
}
else if((1 - Real(data[i][6]) > 0.001)
&& (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<value_type>())
&& (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<double>()))
{
value_type inv = boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6]));
BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision);
inv = boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6]));
BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision);
}
else if(Real(data[i][6]) == 1)
{
BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value<value_type>());
}
}
}
template <class Real, class T>
void test_inverses2(const T& data, const char* type_name, const char* test_name)
{
#if !(defined(ERROR_REPORTING_MODE) && !defined(IBETA_INVA_FUNCTION_TO_TEST))
//typedef typename T::value_type row_type;
typedef Real value_type;
typedef value_type (*pg)(value_type, value_type, value_type);
#ifdef IBETA_INVA_FUNCTION_TO_TEST
pg funcp = IBETA_INVA_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = boost::math::ibeta_inva<value_type, value_type, value_type>;
#else
pg funcp = boost::math::ibeta_inva;
#endif
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test ibeta_inva(T, T, T) against data:
//
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1, 2),
extract_result<Real>(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_inva", test_name);
//
// test ibetac_inva(T, T, T) against data:
//
#ifdef IBETAC_INVA_FUNCTION_TO_TEST
funcp = IBETAC_INVA_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
funcp = boost::math::ibetac_inva<value_type, value_type, value_type>;
#else
funcp = boost::math::ibetac_inva;
#endif
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1, 2),
extract_result<Real>(4));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_inva", test_name);
//
// test ibeta_invb(T, T, T) against data:
//
#ifdef IBETA_INVB_FUNCTION_TO_TEST
funcp = IBETA_INVB_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
funcp = boost::math::ibeta_invb<value_type, value_type, value_type>;
#else
funcp = boost::math::ibeta_invb;
#endif
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1, 2),
extract_result<Real>(5));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_invb", test_name);
//
// test ibetac_invb(T, T, T) against data:
//
#ifdef IBETAC_INVB_FUNCTION_TO_TEST
funcp = IBETAC_INVB_FUNCTION_TO_TEST;
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
funcp = boost::math::ibetac_invb<value_type, value_type, value_type>;
#else
funcp = boost::math::ibetac_invb;
#endif
result = boost::math::tools::test_hetero<Real>(
data,
bind_func<Real>(funcp, 0, 1, 2),
extract_result<Real>(6));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_invb", test_name);
#endif
}
template <class T>
void test_beta(T, const char* name)
{
#if !defined(ERROR_REPORTING_MODE)
//
// The actual test data is rather verbose, so it's in a separate file
//
// The contents are as follows, each row of data contains
// five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
//
std::cout << "Running sanity checks for type " << name << std::endl;
#if !defined(TEST_DATA) || (TEST_DATA == 1)
# include "ibeta_small_data.ipp"
test_inverses<T>(ibeta_small_data);
#endif
#if !defined(TEST_DATA) || (TEST_DATA == 2)
# include "ibeta_data.ipp"
test_inverses<T>(ibeta_data);
#endif
#if !defined(TEST_DATA) || (TEST_DATA == 3)
# include "ibeta_large_data.ipp"
test_inverses<T>(ibeta_large_data);
#endif
#endif
#if !defined(TEST_REAL_CONCEPT) || defined(FULL_TEST) || (TEST_DATA == 4)
if(boost::is_floating_point<T>::value){
//
// This accuracy test is normally only enabled for "real"
// floating point types and not for class real_concept.
// The reason is that these tests are exceptionally slow
// to complete when T doesn't have Lanczos support defined for it.
//
# include "ibeta_inva_data.ipp"
test_inverses2<T>(ibeta_inva_data, name, "Inverse incomplete beta");
}
#endif
//
// Special spot tests and bug reports:
//
if (std::numeric_limits<T>::has_quiet_NaN)
{
T n = std::numeric_limits<T>::quiet_NaN();
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_inva(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
}
if (std::numeric_limits<T>::has_infinity)
{
T n = std::numeric_limits<T>::infinity();
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(n, static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), n, static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), n), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(-n), static_cast<T>(2.125), static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(-n), static_cast<T>(0.125)), std::domain_error);
BOOST_MATH_CHECK_THROW(::boost::math::ibeta_invb(static_cast<T>(2.125), static_cast<T>(1.125), static_cast<T>(-n)), std::domain_error);
}
}
|