1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
// (C) Copyright John Maddock 2015.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "pch.hpp"
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/test/results_collector.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/math/special_functions/cbrt.hpp>
#include <boost/math/special_functions/beta.hpp>
#include <iostream>
#include <iomanip>
#include <tuple>
#include "table_type.hpp"
// No derivatives - using TOMS748 internally.
struct cbrt_functor_noderiv
{ // cube root of x using only function - no derivatives.
cbrt_functor_noderiv(double to_find_root_of) : a(to_find_root_of)
{ // Constructor just stores value a to find root of.
}
double operator()(double x)
{
double fx = x*x*x - a; // Difference (estimate x^3 - a).
return fx;
}
private:
double a; // to be 'cube_rooted'.
}; // template <class T> struct cbrt_functor_noderiv
// Using 1st derivative only Newton-Raphson
struct cbrt_functor_deriv
{ // Functor also returning 1st derivative.
cbrt_functor_deriv(double const& to_find_root_of) : a(to_find_root_of)
{ // Constructor stores value a to find root of,
// for example: calling cbrt_functor_deriv<double>(x) to use to get cube root of x.
}
std::pair<double, double> operator()(double const& x)
{ // Return both f(x) and f'(x).
double fx = x*x*x - a; // Difference (estimate x^3 - value).
double dx = 3 * x*x; // 1st derivative = 3x^2.
return std::make_pair(fx, dx); // 'return' both fx and dx.
}
private:
double a; // to be 'cube_rooted'.
};
// Using 1st and 2nd derivatives with Halley algorithm.
struct cbrt_functor_2deriv
{ // Functor returning both 1st and 2nd derivatives.
cbrt_functor_2deriv(double const& to_find_root_of) : a(to_find_root_of)
{ // Constructor stores value a to find root of, for example:
// calling cbrt_functor_2deriv<double>(x) to get cube root of x,
}
std::tuple<double, double, double> operator()(double const& x)
{ // Return both f(x) and f'(x) and f''(x).
double fx = x*x*x - a; // Difference (estimate x^3 - value).
double dx = 3 * x*x; // 1st derivative = 3x^2.
double d2x = 6 * x; // 2nd derivative = 6x.
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
}
private:
double a; // to be 'cube_rooted'.
};
template <class T, class Policy>
struct ibeta_roots_1 // for first order algorithms
{
ibeta_roots_1(T _a, T _b, T t, bool inv = false)
: a(_a), b(_b), target(t), invert(inv) {}
T operator()(const T& x)
{
return boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
}
private:
T a, b, target;
bool invert;
};
template <class T, class Policy>
struct ibeta_roots_2 // for second order algorithms
{
ibeta_roots_2(T _a, T _b, T t, bool inv = false)
: a(_a), b(_b), target(t), invert(inv) {}
boost::math::tuple<T, T> operator()(const T& x)
{
typedef boost::math::lanczos::lanczos<T, Policy> S;
typedef typename S::type L;
T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
T f1 = invert ?
-boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())
: boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());
T y = 1 - x;
if (y == 0)
y = boost::math::tools::min_value<T>() * 8;
f1 /= y * x;
// make sure we don't have a zero derivative:
if (f1 == 0)
f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;
return boost::math::make_tuple(f, f1);
}
private:
T a, b, target;
bool invert;
};
template <class T, class Policy>
struct ibeta_roots_3 // for third order algorithms
{
ibeta_roots_3(T _a, T _b, T t, bool inv = false)
: a(_a), b(_b), target(t), invert(inv) {}
boost::math::tuple<T, T, T> operator()(const T& x)
{
typedef typename boost::math::lanczos::lanczos<T, Policy>::type L;
T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
T f1 = invert ?
-boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())
: boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());
T y = 1 - x;
if (y == 0)
y = boost::math::tools::min_value<T>() * 8;
f1 /= y * x;
T f2 = f1 * (-y * a + (b - 2) * x + 1) / (y * x);
if (invert)
f2 = -f2;
// make sure we don't have a zero derivative:
if (f1 == 0)
f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;
return boost::math::make_tuple(f, f1, f2);
}
private:
T a, b, target;
bool invert;
};
BOOST_AUTO_TEST_CASE( test_main )
{
int newton_limits = static_cast<int>(std::numeric_limits<double>::digits * 0.6);
double arg = 1e-50;
std::uintmax_t iters;
double guess;
double dr;
while(arg < 1e50)
{
double result = boost::math::cbrt(arg);
//
// Start with a really bad guess 5 times below the result:
//
guess = result / 5;
iters = 1000;
// TOMS algo first:
std::pair<double, double> r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
BOOST_CHECK_LE(iters, 14);
// Newton next:
iters = 1000;
dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, guess / 2, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 12);
// Halley next:
iters = 1000;
dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 7);
// Schroder next:
iters = 1000;
dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 11);
//
// Over again with a bad guess 5 times larger than the result:
//
iters = 1000;
guess = result * 5;
r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
BOOST_CHECK_LE(iters, 14);
// Newton next:
iters = 1000;
dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 12);
// Halley next:
iters = 1000;
dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 7);
// Schroder next:
iters = 1000;
dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 11);
//
// A much better guess, 1% below result:
//
iters = 1000;
guess = result * 0.9;
r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
BOOST_CHECK_LE(iters, 12);
// Newton next:
iters = 1000;
dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 5);
// Halley next:
iters = 1000;
dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 3);
// Schroder next:
iters = 1000;
dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 4);
//
// A much better guess, 1% above result:
//
iters = 1000;
guess = result * 1.1;
r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
BOOST_CHECK_LE(iters, 12);
// Newton next:
iters = 1000;
dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 5);
// Halley next:
iters = 1000;
dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 3);
// Schroder next:
iters = 1000;
dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
BOOST_CHECK_LE(iters, 4);
arg *= 3.5;
}
//
// Test ibeta as this triggers all the pathological cases!
//
#ifndef SC_
#define SC_(x) x
#endif
#define T double
# include "ibeta_small_data.ipp"
for (unsigned i = 0; i < ibeta_small_data.size(); ++i)
{
//
// These inverse tests are thrown off if the output of the
// incomplete beta is too close to 1: basically there is insuffient
// information left in the value we're using as input to the inverse
// to be able to get back to the original value.
//
if (ibeta_small_data[i][5] == 0)
{
iters = 1000;
dr = boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
BOOST_CHECK_EQUAL(dr, 0.0);
BOOST_CHECK_LE(iters, 27);
iters = 1000;
dr = boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
BOOST_CHECK_EQUAL(dr, 0.0);
BOOST_CHECK_LE(iters, 10);
}
else if ((1 - ibeta_small_data[i][5] > 0.001)
&& (fabs(ibeta_small_data[i][5]) > 2 * boost::math::tools::min_value<double>()))
{
iters = 1000;
double result = ibeta_small_data[i][2];
dr = boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 200);
#if defined(BOOST_MSVC) && (BOOST_MSVC == 1600)
BOOST_CHECK_LE(iters, 40);
#else
BOOST_CHECK_LE(iters, 27);
#endif
iters = 1000;
result = ibeta_small_data[i][2];
dr = boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 200);
#if defined(__PPC__) || defined(__aarch64__) || (LDBL_MANT_DIG > 100)
BOOST_CHECK_LE(iters, 55);
#else
BOOST_CHECK_LE(iters, 40);
#endif
}
else if (1 == ibeta_small_data[i][5])
{
iters = 1000;
dr = boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
BOOST_CHECK_EQUAL(dr, 1.0);
BOOST_CHECK_LE(iters, 27);
iters = 1000;
dr = boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(ibeta_small_data[i][0], ibeta_small_data[i][1], ibeta_small_data[i][5]), 0.5, 0.0, 1.0, 53, iters);
BOOST_CHECK_EQUAL(dr, 1.0);
BOOST_CHECK_LE(iters, 10);
}
}
}
|