1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
// Copyright 2010 Christophe Henry
// henry UNDERSCORE christophe AT hotmail DOT com
// This is an extended version of the state machine available in the boost::mpl library
// Distributed under the same license as the original.
// Copyright for the original version:
// Copyright 2005 David Abrahams and Aleksey Gurtovoy. Distributed
// under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// back-end
#include <boost/msm/back/state_machine.hpp>
//front-end
#include <boost/msm/front/state_machine_def.hpp>
#ifndef BOOST_MSM_NONSTANDALONE_TEST
#define BOOST_TEST_MODULE MyTest
#endif
#include <boost/test/unit_test.hpp>
namespace msm = boost::msm;
namespace mpl = boost::mpl;
using namespace boost::msm::front;
namespace
{
// events
struct event1 {};
// front-end: define the FSM structure
struct my_machine_ : public msm::front::state_machine_def<my_machine_>
{
unsigned int state2_to_state3_counter;
unsigned int state3_to_state4_counter;
unsigned int always_true_counter;
unsigned int always_false_counter;
my_machine_():
state2_to_state3_counter(0),
state3_to_state4_counter(0),
always_true_counter(0),
always_false_counter(0)
{}
// The list of FSM states
struct State1 : public msm::front::state<>
{
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
struct State2 : public msm::front::state<>
{
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
struct State3 : public msm::front::state<>
{
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
struct State4 : public msm::front::state<>
{
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
// the initial state of the player SM. Must be defined
typedef State1 initial_state;
// transition actions
void State2ToState3(none const&) { ++state2_to_state3_counter; }
void State3ToState4(none const&) { ++state3_to_state4_counter; }
// guard conditions
bool always_true(none const& )
{
++always_true_counter;
return true;
}
bool always_false(none const& )
{
++always_false_counter;
return false;
}
typedef my_machine_ p; // makes transition table cleaner
// Transition table for player
struct transition_table : mpl::vector<
// Start Event Next Action Guard
// +---------+-------------+---------+---------------------+----------------------+
_row < State1 , none , State2 >,
a_row < State2 , none , State3 , &p::State2ToState3 >,
// +---------+-------------+---------+---------------------+----------------------+
row < State3 , none , State4 , &p::State3ToState4 , &p::always_true >,
g_row < State3 , none , State4 , &p::always_false >,
_row < State4 , event1 , State1 >
// +---------+-------------+---------+---------------------+----------------------+
> {};
// Replaces the default no-transition response.
template <class FSM,class Event>
void no_transition(Event const&, FSM&,int)
{
BOOST_FAIL("no_transition called!");
}
// init counters
template <class Event,class FSM>
void on_entry(Event const&,FSM& fsm)
{
fsm.template get_state<my_machine_::State1&>().entry_counter=0;
fsm.template get_state<my_machine_::State1&>().exit_counter=0;
fsm.template get_state<my_machine_::State2&>().entry_counter=0;
fsm.template get_state<my_machine_::State2&>().exit_counter=0;
fsm.template get_state<my_machine_::State3&>().entry_counter=0;
fsm.template get_state<my_machine_::State3&>().exit_counter=0;
fsm.template get_state<my_machine_::State4&>().entry_counter=0;
fsm.template get_state<my_machine_::State4&>().exit_counter=0;
}
};
// Pick a back-end
typedef msm::back::state_machine<my_machine_> my_machine;
//static char const* const state_names[] = { "State1", "State2", "State3", "State4" };
BOOST_AUTO_TEST_CASE( anonymous_test )
{
my_machine p;
// needed to start the highest-level SM. This will call on_entry and mark the start of the SM
// in this case it will also immediately trigger all anonymous transitions
p.start();
BOOST_CHECK_MESSAGE(p.current_state()[0] == 3,"State4 should be active"); //State4
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State1&>().exit_counter == 1,"State1 exit not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State1&>().entry_counter == 1,"State1 entry not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State2&>().exit_counter == 1,"State2 exit not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State2&>().entry_counter == 1,"State2 entry not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State3&>().exit_counter == 1,"State3 exit not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State3&>().entry_counter == 1,"State3 entry not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State4&>().entry_counter == 1,"State4 entry not called correctly");
BOOST_CHECK_MESSAGE(p.always_true_counter == 1,"guard not called correctly");
BOOST_CHECK_MESSAGE(p.always_false_counter == 1,"guard not called correctly");
BOOST_CHECK_MESSAGE(p.state2_to_state3_counter == 1,"action not called correctly");
BOOST_CHECK_MESSAGE(p.state3_to_state4_counter == 1,"action not called correctly");
// this event will bring us back to the initial state and thus, a new "loop" will be started
p.process_event(event1());
BOOST_CHECK_MESSAGE(p.current_state()[0] == 3,"State4 should be active"); //State4
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State1&>().exit_counter == 2,"State1 exit not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State1&>().entry_counter == 2,"State1 entry not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State2&>().exit_counter == 2,"State2 exit not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State2&>().entry_counter == 2,"State2 entry not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State3&>().exit_counter == 2,"State3 exit not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State3&>().entry_counter == 2,"State3 entry not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State4&>().entry_counter == 2,"State4 entry not called correctly");
BOOST_CHECK_MESSAGE(p.get_state<my_machine_::State4&>().exit_counter == 1,"State4 exit not called correctly");
BOOST_CHECK_MESSAGE(p.always_true_counter == 2,"guard not called correctly");
BOOST_CHECK_MESSAGE(p.always_false_counter == 2,"guard not called correctly");
BOOST_CHECK_MESSAGE(p.state2_to_state3_counter == 2,"action not called correctly");
BOOST_CHECK_MESSAGE(p.state3_to_state4_counter == 2,"action not called correctly");
}
}
|