1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
//
// Copyright (c) 2019-2025 Ruben Perez Hidalgo (rubenperez038 at gmail dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/mysql/pfr.hpp>
#include <boost/asio/awaitable.hpp>
#if defined(BOOST_ASIO_HAS_CO_AWAIT) && BOOST_PFR_CORE_NAME_ENABLED
//[example_tutorial_error_handling
/**
* This tutorial adds error handling to the program in the previous tutorial.
* It shows how to avoid exceptions and use diagnostics objects.
*
* It uses Boost.Pfr for reflection, which requires C++20.
* You can backport it to C++14 if you need by using Boost.Describe.
* It uses C++20 coroutines. If you need, you can backport
* it to C++11 by using callbacks, asio::yield_context
* or sync functions instead of coroutines.
*
* This example uses the 'boost_mysql_examples' database, which you
* can get by running db_setup.sql.
*/
#include <boost/mysql/connection_pool.hpp>
#include <boost/mysql/diagnostics.hpp>
#include <boost/mysql/pfr.hpp>
#include <boost/mysql/pool_params.hpp>
#include <boost/mysql/static_results.hpp>
#include <boost/mysql/with_params.hpp>
#include <boost/asio/as_tuple.hpp>
#include <boost/asio/awaitable.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/cancel_after.hpp>
#include <boost/asio/cancellation_type.hpp>
#include <boost/asio/co_spawn.hpp>
#include <boost/asio/detached.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <boost/asio/read.hpp>
#include <boost/asio/signal_set.hpp>
#include <boost/asio/this_coro.hpp>
#include <boost/asio/write.hpp>
#include <boost/endian/conversion.hpp>
#include <boost/system/error_code.hpp>
#include <cstdint>
#include <exception>
#include <iostream>
#include <string>
namespace mysql = boost::mysql;
namespace asio = boost::asio;
//[tutorial_error_handling_log_error
// Log an error to std::cerr
void log_error(const char* header, boost::system::error_code ec, const mysql::diagnostics& diag = {})
{
// Inserting the error code only prints the number and category. Add the message, too.
std::cerr << header << ": " << ec << " " << ec.message();
// client_message() contains client-side generated messages that don't
// contain user-input. This is usually embedded in exceptions.
// When working with error codes, we need to log it explicitly
if (!diag.client_message().empty())
{
std::cerr << ": " << diag.client_message();
}
// server_message() contains server-side messages, and thus may
// contain user-supplied input. Printing it is safe.
if (!diag.server_message().empty())
{
std::cerr << ": " << diag.server_message();
}
// Done
std::cerr << std::endl;
}
//]
// Should contain a member for each field of interest present in our query
struct employee
{
std::string first_name;
std::string last_name;
};
// Encapsulates the database access logic.
// Given an employee_id, retrieves the employee details to be sent to the client.
//[tutorial_error_handling_db
asio::awaitable<std::string> get_employee_details(mysql::connection_pool& pool, std::int64_t employee_id)
{
// Will be populated with error information in case of error
mysql::diagnostics diag;
// Get a connection from the pool.
// This will wait until a healthy connection is ready to be used.
// ec is an error_code, conn is the mysql::pooled_connection
auto [ec, conn] = co_await pool.async_get_connection(diag, asio::as_tuple);
if (ec)
{
// A connection couldn't be obtained.
// This may be because a timeout happened.
log_error("Error in async_get_connection", ec, diag);
co_return "ERROR";
}
// Use the connection normally to query the database.
mysql::static_results<mysql::pfr_by_name<employee>> result;
auto [ec2] = co_await conn->async_execute(
mysql::with_params("SELECT first_name, last_name FROM employee WHERE id = {}", employee_id),
result,
diag,
asio::as_tuple
);
if (ec2)
{
log_error("Error running query", ec2, diag);
co_return "ERROR";
}
// Compose the message to be sent back to the client
if (result.rows().empty())
{
co_return "NOT_FOUND";
}
else
{
const auto& emp = result.rows()[0];
co_return emp.first_name + ' ' + emp.last_name;
}
// When the pooled_connection is destroyed, the connection is returned
// to the pool, so it can be re-used.
}
//]
//[tutorial_error_handling_session
asio::awaitable<void> handle_session(mysql::connection_pool& pool, asio::ip::tcp::socket client_socket)
{
// Enable the use of the "s" suffix for std::chrono::seconds
using namespace std::chrono_literals;
//[tutorial_error_handling_read_timeout
// Read the request from the client.
// async_read ensures that the 8-byte buffer is filled, handling partial reads.
// Error the read if it hasn't completed after 30 seconds.
unsigned char message[8]{};
auto [ec1, bytes_read] = co_await asio::async_read(
client_socket,
asio::buffer(message),
asio::cancel_after(30s, asio::as_tuple)
);
if (ec1)
{
// An error or a timeout happened.
log_error("Error reading from the socket", ec1);
co_return;
}
//]
// Parse the 64-bit big-endian int into a native int64_t
std::int64_t employee_id = boost::endian::load_big_s64(message);
//[tutorial_error_handling_db_timeout
// Invoke the database handling logic.
// Apply an overall timeout of 20 seconds to the entire coroutine.
// Using asio::co_spawn allows us to pass a completion token, like asio::cancel_after.
// As other async operations, co_spawn's default completion token allows
// us to use co_await on its return value.
std::string response = co_await asio::co_spawn(
// Run the child coroutine using the same executor as this coroutine
co_await asio::this_coro::executor,
// The coroutine should run our database logic
[&pool, employee_id] { return get_employee_details(pool, employee_id); },
// Apply a timeout, and return an object that can be co_awaited.
// We don't use as_tuple here because we're already handling I/O errors
// inside get_employee_details. If an unexpected exception happens, propagate it.
asio::cancel_after(20s)
);
//]
// Write the response back to the client.
// async_write ensures that the entire message is written, handling partial writes.
// Set a timeout to the write operation, too.
auto [ec2, bytes_written] = co_await asio::async_write(
client_socket,
asio::buffer(response),
asio::cancel_after(30s, asio::as_tuple)
);
if (ec2)
{
log_error("Error writing to the socket", ec2);
co_return;
}
// The socket's destructor will close the client connection
}
//]
asio::awaitable<void> listener(mysql::connection_pool& pool, unsigned short port)
{
// An object that accepts incoming TCP connections.
asio::ip::tcp::acceptor acc(co_await asio::this_coro::executor);
// The endpoint where the server will listen.
asio::ip::tcp::endpoint listening_endpoint(asio::ip::make_address("0.0.0.0"), port);
// Open the acceptor
acc.open(listening_endpoint.protocol());
// Allow reusing the local address, so we can restart our server
// without encountering errors in bind
acc.set_option(asio::socket_base::reuse_address(true));
// Bind to the local address
acc.bind(listening_endpoint);
// Start listening for connections
acc.listen();
std::cout << "Server listening at " << acc.local_endpoint() << std::endl;
// Start the accept loop
while (true)
{
// Accept a new connection
auto [ec, sock] = co_await acc.async_accept(asio::as_tuple);
if (ec)
{
log_error("Error accepting connection", ec);
co_return;
}
// Function implementing our session logic.
// Take ownership of the socket.
// Having this as a named variable workarounds a gcc bug
// (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107288)
auto session_logic = [&pool, s = std::move(sock)]() mutable {
return handle_session(pool, std::move(s));
};
// Launch a coroutine that runs our session logic.
// We don't co_await this coroutine so we can listen
// to new connections while the session is running
asio::co_spawn(
// Use the same executor as the current coroutine
co_await asio::this_coro::executor,
// Session logic
std::move(session_logic),
// Will be called when the coroutine finishes
[](std::exception_ptr ptr) {
if (ptr)
{
// For extra safety, log the exception but don't propagate it.
// If we failed to anticipate an error condition that ends up raising an exception,
// terminate only the affected session, instead of crashing the server.
try
{
std::rethrow_exception(ptr);
}
catch (const std::exception& exc)
{
std::cerr << "Uncaught error in a session: " << exc.what() << std::endl;
}
}
}
);
}
}
void main_impl(int argc, char** argv)
{
if (argc != 5)
{
std::cerr << "Usage: " << argv[0] << " <username> <password> <server-hostname> <listener-port>\n";
exit(1);
}
const char* username = argv[1];
const char* password = argv[2];
const char* server_hostname = argv[3];
auto listener_port = static_cast<unsigned short>(std::stoi(argv[4]));
// Create an I/O context, required by all I/O objects
asio::io_context ctx;
// pool_params contains configuration for the pool.
// You must specify enough information to establish a connection,
// including the server address and credentials.
// You can configure a lot of other things, like pool limits
mysql::pool_params params;
params.server_address.emplace_host_and_port(server_hostname);
params.username = username;
params.password = password;
params.database = "boost_mysql_examples";
// Construct the pool.
// ctx will be used to create the connections and other I/O objects
mysql::connection_pool pool(ctx, std::move(params));
// You need to call async_run on the pool before doing anything useful with it.
// async_run creates connections and keeps them healthy. It must be called
// only once per pool.
// The detached completion token means that we don't want to be notified when
// the operation ends. It's similar to a no-op callback.
pool.async_run(asio::detached);
// signal_set is an I/O object that allows waiting for signals
asio::signal_set signals(ctx, SIGINT, SIGTERM);
// Wait for signals
signals.async_wait([&](boost::system::error_code, int) {
// Stop the execution context. This will cause io_context::run to return
ctx.stop();
});
// Launch our listener
asio::co_spawn(
ctx,
[&pool, listener_port] { return listener(pool, listener_port); },
// If any exception is thrown in the coroutine body, rethrow it.
[](std::exception_ptr ptr) {
if (ptr)
{
std::rethrow_exception(ptr);
}
}
);
// Calling run will actually execute the coroutine until completion
ctx.run();
}
int main(int argc, char** argv)
{
try
{
main_impl(argc, argv);
}
catch (const std::exception& err)
{
std::cerr << "Error: " << err.what() << std::endl;
return 1;
}
}
//]
#else
#include <iostream>
int main()
{
std::cout << "Sorry, your compiler doesn't have the required capabilities to run this example"
<< std::endl;
}
#endif
|