1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
//
// Copyright (c) 2010 Athanasios Iliopoulos
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/numeric/ublas/assignment.hpp>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/vector_proxy.hpp>
#include <boost/numeric/ublas/matrix_proxy.hpp>
#include <boost/numeric/ublas/vector_sparse.hpp>
#include <boost/numeric/ublas/matrix_sparse.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/matrix.hpp>
using namespace boost::numeric::ublas;
int main() {
// Simple vector fill
vector<double> a(3);
a <<= 0, 1, 2;
std::cout << a << std::endl;
// [ 0 1 2]
// Vector from vector
vector<double> b(7);
b <<= a, 10, a;
std::cout << b << std::endl;
// [ 0 1 2 10 0 1 2]
// Simple matrix fill
matrix<double> A(3,3);
A <<= 0, 1, 2,
3, 4, 5,
6, 7, 8;
std::cout << A << std::endl;
// [ 0 1 2 ]
// [ 3 4 5 ]
// [ 6 7 8 ]
// Matrix from vector
A <<= 0, 1, 2,
3, 4, 5,
a;
std::cout << A << std::endl;
// [ 0 1 2 ]
// [ 3 4 5 ]
// [ 0 1 2 ]
// Matrix from vector - column assignment
A <<= move(0,2), traverse_policy::by_column(),
a;
std::cout << A << std::endl;
// [ 0 1 0 ]
// [ 3 4 1 ]
// [ 0 1 2 ]
// Another matrix from vector example (watch the wraping);
vector<double> c(9); c <<= 1, 2, 3, 4, 5, 6, 7, 8, 9;
A <<= c;
std::cout << A << std::endl;
// [ 1 2 3 ]
// [ 4 5 6 ]
// [ 7 8 9 ]
// If for performance(Benchmarks are not definite about that) or consistency reasons you need to disable wraping:
static next_row_manip endr; //This can be defined globally
A <<= traverse_policy::by_row_no_wrap(),
1, 2, 3, endr,
4, 5, 6, endr,
7, 8, 9, endr;
// [ 1 2 3 ]
// [ 4 5 6 ]
// [ 7 8 9 ]
// If by default you need to disable wraping define
// BOOST_UBLAS_DEFAULT_NO_WRAP_POLICY, in the compilation options,
// so that you avoid typing the "traverse_policy::by_row_no_wrap()".
// Plus and minus assign:
A <<= fill_policy::index_plus_assign(),
3,2,1;
std::cout << A << std::endl;
// [ 4 4 4 ]
// [ 4 5 6 ]
// [ 7 8 9 ]
// Matrix from proxy
A <<= 0, 1, 2,
project(b, range(3,6)),
a;
std::cout << A << std::endl;
// [ 0 1 2 ]
// [10 0 1 ]
// [ 6 7 8 ]
// Matrix from matrix
matrix<double> B(6,6);
B <<= A, A,
A, A;
std::cout << B << std::endl;
// [ A A ]
// [ A A ]
// Matrix range (vector is similar)
B = zero_matrix<double>(6,6);
matrix_range<matrix<double> > mrB (B, range (1, 4), range (1, 4));
mrB <<= 1,2,3,4,5,6,7,8,9;
std::cout << B << std::endl;
// [ 0 0 0 0 0 0]
// [ 0 1 2 3 0 0]
// [ 0 4 5 6 0 0]
// [ 0 0 0 0 0 0]
// [ 0 0 0 0 0 0]
// [ 0 0 0 0 0 0]
// Horizontal concatenation can be achieved using this trick:
matrix<double> BH(3,9);
BH <<= A, A, A;
std::cout << BH << std::endl;
// [ A A A]
// Vertical concatenation can be achieved using this trick:
matrix<double> BV(9,3);
BV <<= A,
A,
A;
std::cout << BV << std::endl;
// [ A ]
// [ A ]
// [ A ]
// Watch the difference when assigning matrices for different traverse policies:
matrix<double> BR(9,9, 0);
BR <<= traverse_policy::by_row(), // This is the default, so this might as well be omitted.
A, A, A;
std::cout << BR << std::endl;
// [ A A A]
// [ 0 0 0]
// [ 0 0 0]
matrix<double> BC(9,9, 0);
BC <<= traverse_policy::by_column(),
A, A, A;
std::cout << BC << std::endl;
// [ A 0 0]
// [ A 0 0]
// [ A 0 0]
// The following will throw a run-time exception in debug mode (matrix mid-assignment wrap is not allowed) :
// matrix<double> C(7,7);
// C <<= A, A, A;
// Matrix from matrix with index manipulators
matrix<double> C(6,6,0);
C <<= A, move(3,0), A;
// [ A 0 ]
// [ 0 A ]
// A faster way for to construct this dense matrix.
matrix<double> D(6,6);
D <<= A, zero_matrix<double>(3,3),
zero_matrix<double>(3,3), A;
// [ A 0 ]
// [ 0 A ]
// The next_row and next_column index manipulators:
// note: next_row and next_column functions return
// a next_row_manip and and next_column_manip object.
// This is the manipulator we used earlier when we disabled
// wrapping.
matrix<double> E(2,4,0);
E <<= 1, 2, next_row(),
3, 4, next_column(),5;
std::cout << E << std::endl;
// [ 1 2 0 5 ]
// [ 3 4 0 0 ]
// The begin1 (moves to the begining of the column) index manipulator, begin2 does the same for the row:
matrix<double> F(2,4,0);
F <<= 1, 2, next_row(),
3, 4, begin1(),5;
std::cout << F << std::endl;
// [ 1 2 5 0 ]
// [ 3 4 0 0 ]
// The move (relative) and move_to(absolute) index manipulators (probably the most useful manipulators):
matrix<double> G(2,4,0);
G <<= 1, 2, move(0,1), 3,
move_to(1,3), 4;
std::cout << G << std::endl;
// [ 1 2 0 3 ]
// [ 0 0 0 4 ]
// Static equivallents (faster) when sizes are known at compile time:
matrix<double> Gs(2,4,0);
Gs <<= 1, 2, move<0,1>(), 3,
move_to<1,3>(), 4;
std::cout << Gs << std::endl;
// [ 1 2 0 3 ]
// [ 0 0 0 4 ]
// Choice of traverse policy (default is "row by row" traverse):
matrix<double> H(2,4,0);
H <<= 1, 2, 3, 4,
5, 6, 7, 8;
std::cout << H << std::endl;
// [ 1 2 3 4 ]
// [ 5 6 7 8 ]
H <<= traverse_policy::by_column(),
1, 2, 3, 4,
5, 6, 7, 8;
std::cout << H << std::endl;
// [ 1 3 5 7 ]
// [ 2 4 6 8 ]
// traverse policy can be changed mid assignment if desired.
matrix<double> H1(4,4,0);
H1 <<= 1, 2, 3, traverse_policy::by_column(), 1, 2, 3;
std::cout << H << std::endl;
// [1 2 3 1]
// [0 0 0 2]
// [0 0 0 3]
// [0 0 0 0]
// note: fill_policy and traverse_policy are namespaces, so you can use them
// by a using statement.
// For compressed and coordinate matrix types a push_back or insert fill policy can be chosen for faster assginment:
compressed_matrix<double> I(2, 2);
I <<= fill_policy::sparse_push_back(),
0, 1, 2, 3;
std::cout << I << std::endl;
// [ 0 1 ]
// [ 2 3 ]
coordinate_matrix<double> J(2,2);
J<<=fill_policy::sparse_insert(),
1, 2, 3, 4;
std::cout << J << std::endl;
// [ 1 2 ]
// [ 3 4 ]
// A sparse matrix from another matrix works as with other types.
coordinate_matrix<double> K(3,3);
K<<=fill_policy::sparse_insert(),
J;
std::cout << K << std::endl;
// [ 1 2 0 ]
// [ 3 4 0 ]
// [ 0 0 0 ]
// Be careful this will not work:
//compressed_matrix<double> J2(4,4);
//J2<<=fill_policy::sparse_push_back(),
// J,J;
// That's because the second J2's elements
// are attempted to be assigned at positions
// that come before the elements already pushed.
// Unfortunatelly that's the only thing you can do in this case
// (or of course make a custom agorithm):
compressed_matrix<double> J2(4,4);
J2<<=fill_policy::sparse_push_back(),
J, fill_policy::sparse_insert(),
J;
std::cout << J2 << std::endl;
// [ J J ]
// [ 0 0 0 0 ]
// [ 0 0 0 0 ]
// A different traverse policy doesn't change the result, only they order it is been assigned.
coordinate_matrix<double> L(3,3);
L<<=fill_policy::sparse_insert(), traverse_policy::by_column(),
J;
std::cout << L << std::endl;
// (same as previous)
// [ 1 2 0 ]
// [ 3 4 0 ]
// [ 0 0 0 ]
typedef coordinate_matrix<double>::size_type cmst;
const cmst size = 30;
//typedef fill_policy::sparse_push_back spb;
// Although the above could have been used the following is may be faster if
// you use the policy often and for relatively small containers.
static fill_policy::sparse_push_back spb;
// A block diagonal sparse using a loop:
compressed_matrix<double> M(size, size, 4*15);
for (cmst i=0; i!=size; i+=J.size1())
M <<= spb, move_to(i,i), J;
// If typedef was used above the last expression should start
// with M <<= spb()...
// Displaying so that blocks can be easily seen:
for (unsigned int i=0; i!=M.size1(); i++) {
std::cout << M(i,0);
for (unsigned int j=1; j!=M.size2(); j++) std::cout << ", " << M(i,j);
std::cout << "\n";
}
// [ J 0 0 0 ... 0]
// [ 0 J 0 0 ... 0]
// [ 0 . . . ... 0]
// [ 0 0 ... 0 0 J]
// A "repeat" trasverser may by provided so that this becomes faster and an on-liner like:
// M <<= spb, repeat(0, size, J.size1(), 0, size, J.size1()), J;
// An alternate would be to create a :repeater" matrix and vector expression that can be used in other places as well. The latter is probably better,
return 0;
}
|