File: sample8.cpp

package info (click to toggle)
boost1.88 1.88.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 576,932 kB
  • sloc: cpp: 4,149,234; xml: 136,789; ansic: 35,092; python: 33,910; asm: 5,698; sh: 4,604; ada: 1,681; makefile: 1,633; pascal: 1,139; perl: 1,124; sql: 640; yacc: 478; ruby: 271; java: 77; lisp: 24; csh: 6
file content (284 lines) | stat: -rw-r--r-- 8,916 bytes parent folder | download | duplicates (17)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/*=============================================================================
    Phoenix V1.2.1
    Copyright (c) 2001-2003 Joel de Guzman

    Use, modification and distribution is subject to the Boost Software
    License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
    http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
#include <vector>
#include <algorithm>
#include <iostream>

#define PHOENIX_LIMIT 5
#include <boost/spirit/include/phoenix1_operators.hpp>
#include <boost/spirit/include/phoenix1_primitives.hpp>
#include <boost/spirit/include/phoenix1_composite.hpp>
#include <boost/spirit/include/phoenix1_special_ops.hpp>
#include <boost/spirit/include/phoenix1_statements.hpp>

namespace phoenix {

///////////////////////////////////////////////////////////////////////////////
//
//  local_tuple
//
//      This *is a* tuple like the one we see in TupleT in any actor
//      base class' eval member function. local_tuple should look and
//      feel the same as a tupled-args, that's why it is derived from
//      TupleArgsT. It has an added member, locs which is another tuple
//      where the local variables will be stored. locs is mutable to
//      allow read-write access to our locals regardless of
//      local_tuple's constness (The eval member function accepts it as
//      a const argument).
//
///////////////////////////////////////////////////////////////////////////////
template <typename TupleArgsT, typename TupleLocsT>
struct local_tuple : public TupleArgsT {

    typedef TupleLocsT local_vars_t;

    local_tuple(TupleArgsT const& args, TupleLocsT const& locs_)
    :   TupleArgsT(args), locs(locs_) {}

    mutable TupleLocsT locs;
};

///////////////////////////////////////////////////////////////////////////////
//
//  local_var_result
//
//      This is a return type computer. Given a constant integer N and a
//      tuple, get the Nth local variable type. If TupleT is not really
//      a local_tuple, we just return nil_t. Otherwise we get the Nth
//      local variable type.
//
///////////////////////////////////////////////////////////////////////////////
template <int N, typename TupleT>
struct local_var_result {

    typedef nil_t type;
};

//////////////////////////////////
template <int N, typename TupleArgsT, typename TupleLocsT>
struct local_var_result<N, local_tuple<TupleArgsT, TupleLocsT> > {

    typedef typename tuple_element<N, TupleLocsT>::type& type;
};

///////////////////////////////////////////////////////////////////////////////
//
//  local_var
//
//      This class looks so curiously like the argument class. local_var
//      provides access to the Nth local variable packed in the tuple
//      duo local_tuple above. Note that the member function eval
//      expects a local_tuple argument. Otherwise the expression
//      'tuple.locs' will fail (compile-time error). local_var
//      primitives only work within the context of a context_composite
//      (see below).
//
//      Provided are some predefined local_var actors for 0..N local
//      variable access: loc1..locN.
//
///////////////////////////////////////////////////////////////////////////////
template <int N>
struct local_var {

    template <typename TupleT>
    struct result {

        typedef typename local_var_result<N, TupleT>::type type;
    };

    template <typename TupleT>
    typename local_var_result<N, TupleT>::type
    eval(TupleT const& tuple) const
    {
        return tuple.locs[tuple_index<N>()];
    }
};

//////////////////////////////////
namespace locals {

    actor<local_var<0> > const result   = local_var<0>();
    actor<local_var<1> > const loc1     = local_var<1>();
    actor<local_var<2> > const loc2     = local_var<2>();
    actor<local_var<3> > const loc3     = local_var<3>();
    actor<local_var<4> > const loc4     = local_var<4>();
}

///////////////////////////////////////////////////////////////////////////////
//
//  context_composite
//
//      This class encapsulates an actor and some local variable
//      initializers packed in a tuple.
//
//      context_composite is just like a proxy and delegates the actual
//      evaluation to the actor. The actor does the actual work. In the
//      eval member function, before invoking the embedded actor's eval
//      member function, we first stuff an instance of our locals and
//      bundle both 'args' and 'locals' in a local_tuple. This
//      local_tuple instance is created in the stack initializing it
//      with our locals member. We then pass this local_tuple instance
//      as an argument to the actor's eval member function.
//
///////////////////////////////////////////////////////////////////////////////
template <typename ActorT, typename LocsT>
struct context_composite {

    typedef context_composite<ActorT, LocsT> self_t;

    template <typename TupleT>
    struct result { typedef typename tuple_element<0, LocsT>::type type; };

    context_composite(ActorT const& actor_, LocsT const& locals_)
    :   actor(actor_), locals(locals_) {}

    template <typename TupleT>
    typename tuple_element<0, LocsT>::type
    eval(TupleT const& args) const
    {
        local_tuple<TupleT, LocsT>  local_context(args, locals);
        actor.eval(local_context);
        return local_context.locs[tuple_index<0>()];
    }

    ActorT actor;
    LocsT locals;
};

///////////////////////////////////////////////////////////////////////////////
//
//  context_gen
//
//      At construction time, this class is given some local var-
//      initializers packed in a tuple. We just store this for later.
//      The operator[] of this class creates the actual context_composite
//      given an actor. This is responsible for the construct
//      context<types>[actor].
//
///////////////////////////////////////////////////////////////////////////////
template <typename LocsT>
struct context_gen {

    context_gen(LocsT const& locals_)
    :   locals(locals_) {}

    template <typename ActorT>
    actor<context_composite<typename as_actor<ActorT>::type, LocsT> >
    operator[](ActorT const& actor)
    {
        return context_composite<typename as_actor<ActorT>::type, LocsT>
            (as_actor<ActorT>::convert(actor), locals);
    }

    LocsT locals;
};

///////////////////////////////////////////////////////////////////////////////
//
//    Front end generator functions. These generators are overloaded for
//    1..N local variables. context<T0,... TN>(i0,...iN) generate context_gen
//    objects (see above).
//
///////////////////////////////////////////////////////////////////////////////
template <typename T0>
inline context_gen<tuple<T0> >
context()
{
    typedef tuple<T0> tuple_t;
    return context_gen<tuple_t>(tuple_t(T0()));
}

//////////////////////////////////
template <typename T0, typename T1>
inline context_gen<tuple<T0, T1> >
context(
    T1 const& _1 = T1()
)
{
    typedef tuple<T0, T1> tuple_t;
    return context_gen<tuple_t>(tuple_t(T0(), _1));
}

//////////////////////////////////
template <typename T0, typename T1, typename T2>
inline context_gen<tuple<T0, T1, T2> >
context(
    T1 const& _1 = T1(),
    T2 const& _2 = T2()
)
{
    typedef tuple<T0, T1, T2> tuple_t;
    return context_gen<tuple_t>(tuple_t(T0(), _1, _2));
}

//////////////////////////////////
template <typename T0, typename T1, typename T2, typename T3>
inline context_gen<tuple<T0, T1, T2, T3> >
context(
    T1 const& _1 = T1(),
    T2 const& _2 = T2(),
    T3 const& _3 = T3()
)
{
    typedef tuple<T0, T1, T2, T3> tuple_t;
    return context_gen<tuple_t>(tuple_t(T0(), _1, _2, _3));
}

//////////////////////////////////
template <typename T0, typename T1, typename T2, typename T3, typename T4>
inline context_gen<tuple<T0, T1, T2, T3, T4> >
context(
    T1 const& _1 = T1(),
    T2 const& _2 = T2(),
    T3 const& _3 = T3(),
    T4 const& _4 = T4()
)
{
    typedef tuple<T0, T1, T2, T3> tuple_t;
    return context_gen<tuple_t>(tuple_t(T0(), _1, _2, _3, _4));
}

///////////////////////////////////////////////////////////////////////////////
}

//////////////////////////////////
using namespace std;
using namespace phoenix;
using namespace phoenix::locals;

//////////////////////////////////
int
main()
{
    int init[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
    vector<int> c(init, init + 10);
    typedef vector<int>::iterator iterator;

    //  find the first element > 5, print each element
    //  as we traverse the container c. Print the result
    //  if one is found.

    find_if(c.begin(), c.end(),
        context<bool>()
        [
            cout << arg1,
            result = arg1 > 5,
            if_(!result)
            [
                cout << val(", ")
            ]
            .else_
            [
                cout << val(" found result == ") << arg1
            ]
        ]
    );

    return 0;
}