1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/* Copyright 2025 Joaquin M Lopez Munoz.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See https://www.boost.org/libs/bloom for library home page.
*/
#include <boost/core/lightweight_test.hpp>
#include <boost/mp11/algorithm.hpp>
#include <climits>
#include <cmath>
#include <limits>
#include <new>
#include "test_types.hpp"
#include "test_utilities.hpp"
using namespace test_utilities;
static std::size_t num_allocations=0;
template<typename T>
struct counting_allocator
{
using value_type=T;
counting_allocator()=default;
template<typename U>
counting_allocator(const counting_allocator<U>&){}
T* allocate(std::size_t n)
{
++num_allocations;
return static_cast<T*>(capped_new(n*sizeof(T)));
}
void deallocate(T* p,std::size_t){::operator delete(p);}
bool operator==(const counting_allocator& x)const{return true;}
bool operator!=(const counting_allocator& x)const{return false;}
};
template<typename Filter,typename ValueFactory>
void test_capacity()
{
using filter=realloc_filter<Filter,counting_allocator<unsigned char>>;
ValueFactory fac;
{
for(std::size_t n=0;n<10000;++n){
const filter f{n};
std::size_t c=f.capacity();
BOOST_TEST_EQ(c%CHAR_BIT,0);
if(n==0)BOOST_TEST_EQ(c,0);
else BOOST_TEST_GE(c,n);
BOOST_TEST_EQ(filter{c}.capacity(),c);
}
}
{
num_allocations=0;
filter f;
BOOST_TEST_EQ(f.capacity(),0);
BOOST_TEST_EQ(num_allocations,0);
}
{
BOOST_TEST_THROWS(
(void)filter((std::numeric_limits<std::size_t>::max)()),
std::bad_alloc);
}
{
filter f{{fac(),fac()},1000};
std::size_t c=f.capacity();
num_allocations=0;
f.reset(f.capacity());
BOOST_TEST_EQ(num_allocations,0);
BOOST_TEST_EQ(f.capacity(),c);
BOOST_TEST(f==filter{f.capacity()});
}
{
filter f{{fac(),fac()},1000};
num_allocations=0;
f.reset();
BOOST_TEST_EQ(num_allocations,0);
BOOST_TEST_EQ(f.capacity(),0);
BOOST_TEST(f==filter{});
}
{
filter f{{fac(),fac()},1000};
num_allocations=0;
f.reset(0,1.0);
BOOST_TEST_EQ(num_allocations,0);
BOOST_TEST_EQ(f.capacity(),0);
BOOST_TEST(f==filter{});
}
{
filter f{{fac(),fac()},1000};
std::size_t c=f.capacity();
num_allocations=0;
f.reset(c+1);
BOOST_TEST_EQ(num_allocations,1);
BOOST_TEST_GE(f.capacity(),c+1);
BOOST_TEST(f==filter{f.capacity()});
}
{
filter f;
std::size_t c=filter::capacity_for(100,0.1);
num_allocations=0;
f.reset(100,0.1);
BOOST_TEST_EQ(num_allocations,1);
BOOST_TEST_EQ(f.capacity(),c);
}
{
filter f1{{fac(),fac()},1000},f2;
std::size_t c=f1.capacity();
num_allocations=0;
f2=f1;
BOOST_TEST_EQ(num_allocations,1);
BOOST_TEST_GE(f2.capacity(),c);
BOOST_TEST(f1==f2);
}
{
for(int i=0;i<=5;++i){
double fpr=std::pow(10,(double)-i);
BOOST_TEST_EQ(
filter::capacity_for(100,fpr),
filter(100,fpr).capacity());
}
}
}
struct lambda
{
template<typename T>
void operator()(T)
{
using filter=typename T::type;
using value_type=typename filter::value_type;
test_capacity<filter,value_factory<value_type>>();
}
};
int main()
{
boost::mp11::mp_for_each<identity_test_types>(lambda{});
return boost::report_errors();
}
|