1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
/* Copyright 2025 Joaquin M Lopez Munoz.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See https://www.boost.org/libs/bloom for library home page.
*/
#include <boost/core/lightweight_test.hpp>
#include <boost/mp11/algorithm.hpp>
#include <cmath>
#include <limits>
#include <new>
#include <string>
#include "test_types.hpp"
#include "test_utilities.hpp"
using namespace test_utilities;
template<typename T>
struct throwing_allocator
{
using value_type=T;
throwing_allocator()=default;
template<typename U>
throwing_allocator(const throwing_allocator<U>&){}
T* allocate(std::size_t n)
{
return static_cast<T*>(capped_new(n*sizeof(T)));
}
void deallocate(T* p,std::size_t){::operator delete(p);}
bool operator==(const throwing_allocator& x)const{return true;}
bool operator!=(const throwing_allocator& x)const{return false;}
};
template<typename Filter>
double measure_fpr(Filter&& f,std::size_t n)
{
using value_type=typename std::remove_reference<Filter>::type::value_type;
value_factory<value_type> fac;
std::size_t res=0;
for(std::size_t i=0;i<n;++i)f.insert(fac());
for(std::size_t i=0;i<n;++i)res+=f.may_contain(fac());
return (double)res/n;
}
template<typename Filter>
void test_fpr()
{
using filter=rehash_filter<
revalue_filter<
realloc_filter<Filter,throwing_allocator<unsigned char>>,
std::string
>,
boost::hash<std::string>
>;
BOOST_TEST_GT(filter(0,0.0).capacity(),0u);
BOOST_TEST_GT(filter(0,0.5).capacity(),0u);
BOOST_TEST_EQ(filter(0,1.0).capacity(),0u);
BOOST_TEST_THROWS((void)filter(1,0.0),std::bad_alloc);
BOOST_TEST_EQ(filter(100,1.0).capacity(),0u);
{
static constexpr int max_fpr_exp=
std::numeric_limits<std::size_t>::digits>=64?5:3;
for(int i=1;i<=max_fpr_exp;++i){
std::size_t n=(std::size_t)std::pow(10.0,(double)(i+1));
double target_fpr=std::pow(10,(double)-i);
double measured_fpr=measure_fpr(filter(n,target_fpr),n);
double err=measured_fpr/target_fpr;
BOOST_TEST_LE(err,2.5);
}
}
BOOST_TEST_EQ(filter::fpr_for(0,1),0.0);
BOOST_TEST_EQ(filter::fpr_for(0,0),1.0);
BOOST_TEST_EQ(filter::fpr_for(1,0),1.0);
{
for(int i=1;i<=5;++i){
double fpr1=std::pow(10.0,(double)-i);
double fpr2=filter::fpr_for(10000,filter::capacity_for(10000,fpr1));
BOOST_TEST_LE(std::abs((double)fpr2-fpr1)/fpr1,0.2);
}
}
{
for(int i=1;i<=5;++i){
std::size_t m1=(std::size_t)std::pow(10.0,(double)(i+4));
std::size_t m2=filter::capacity_for(10000,filter::fpr_for(10000,m1));
BOOST_TEST_LE(std::abs((double)m2-m1)/m1,0.05);
}
}
}
struct lambda
{
template<typename T>
void operator()(T)
{
using filter=typename T::type;
test_fpr<filter>();
}
};
int main()
{
boost::mp11::mp_for_each<identity_test_types>(lambda{});
return boost::report_errors();
}
|