File: time2_demo.cpp

package info (click to toggle)
boost1.90 1.90.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 593,120 kB
  • sloc: cpp: 4,190,908; xml: 196,648; python: 34,618; ansic: 23,145; asm: 5,468; sh: 3,774; makefile: 1,161; perl: 1,020; sql: 728; ruby: 676; yacc: 478; java: 77; lisp: 24; csh: 6
file content (1655 lines) | stat: -rw-r--r-- 53,949 bytes parent folder | download | duplicates (20)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
//  time2_demo.cpp  ----------------------------------------------------------//

//  Copyright 2008 Howard Hinnant
//  Copyright 2008 Beman Dawes

//  Distributed under the Boost Software License, Version 1.0.
//  See http://www.boost.org/LICENSE_1_0.txt

/*

This code was derived by Beman Dawes from Howard Hinnant's time2_demo prototype.
Many thanks to Howard for making his code available under the Boost license.
The original code was modified to conform to Boost conventions and to section
20.9 Time utilities [time] of the C++ committee's working paper N2798.
See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2798.pdf.

time2_demo contained this comment:

    Much thanks to Andrei Alexandrescu,
                   Walter Brown,
                   Peter Dimov,
                   Jeff Garland,
                   Terry Golubiewski,
                   Daniel Krugler,
                   Anthony Williams.
*/

#define _CRT_SECURE_NO_WARNINGS  // disable VC++ foolishness

#include <boost/chrono/chrono.hpp>
#include <boost/type_traits.hpp>

#include <cassert>
#include <climits>
#include <iostream>
#include <ostream>
#include <stdexcept>

#include <windows.h>

namespace
{
  //struct timeval {
  //        long    tv_sec;         /* seconds */
  //        long    tv_usec;        /* and microseconds */
  //};

  int gettimeofday(struct timeval * tp, void *)
  {
    FILETIME ft;
    ::GetSystemTimeAsFileTime( &ft );  // never fails
    long long t = (static_cast<long long>(ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
  # if !defined( BOOST_MSVC ) || BOOST_MSVC > 1300 // > VC++ 7.0
    t -= 116444736000000000LL;
  # else
    t -= 116444736000000000;
  # endif
    t /= 10;  // microseconds
    tp->tv_sec = static_cast<long>( t / 1000000UL);
    tp->tv_usec = static_cast<long>( t % 1000000UL);
    return 0;
  }
}  // unnamed namespace

//////////////////////////////////////////////////////////
///////////// simulated thread interface /////////////////
//////////////////////////////////////////////////////////


namespace std {

void __print_time(boost::chrono::system_clock::time_point t)
{
    using namespace boost::chrono;
    time_t c_time = system_clock::to_time_t(t);
    std::tm* tmptr = std::localtime(&c_time);
    system_clock::duration d = t.time_since_epoch();
    std::cout << tmptr->tm_hour << ':' << tmptr->tm_min << ':' << tmptr->tm_sec
              << '.' << (d - duration_cast<seconds>(d)).count();
}

namespace this_thread {

template <class Rep, class Period>
void sleep_for(const boost::chrono::duration<Rep, Period>& d)
{
    boost::chrono::microseconds t = boost::chrono::duration_cast<boost::chrono::microseconds>(d);
    if (t < d)
        ++t;
    if (t > boost::chrono::microseconds(0))
        std::cout << "sleep_for " << t.count() << " microseconds\n";
}

template <class Clock, class Duration>
void sleep_until(const boost::chrono::time_point<Clock, Duration>& t)
{
    using namespace boost::chrono;
    typedef time_point<Clock, Duration> Time;
    typedef system_clock::time_point SysTime;
    if (t > Clock::now())
    {
        typedef typename boost::common_type<typename Time::duration,
                                     typename SysTime::duration>::type D;
        /* auto */ D d = t - Clock::now();
        microseconds us = duration_cast<microseconds>(d);
        if (us < d)
            ++us;
        SysTime st = system_clock::now() + us;
        std::cout << "sleep_until    ";
        __print_time(st);
        std::cout << " which is " << (st - system_clock::now()).count() << " microseconds away\n";
    }
}

}  // this_thread

struct mutex {};

struct timed_mutex
{
    bool try_lock() {std::cout << "timed_mutex::try_lock()\n"; return true;}

    template <class Rep, class Period>
        bool try_lock_for(const boost::chrono::duration<Rep, Period>& d)
        {
            boost::chrono::microseconds t = boost::chrono::duration_cast<boost::chrono::microseconds>(d);
            if (t <= boost::chrono::microseconds(0))
                return try_lock();
            std::cout << "try_lock_for " << t.count() << " microseconds\n";
            return true;
        }

    template <class Clock, class Duration>
    bool try_lock_until(const boost::chrono::time_point<Clock, Duration>& t)
    {
        using namespace boost::chrono;
        typedef time_point<Clock, Duration> Time;
        typedef system_clock::time_point SysTime;
        if (t <= Clock::now())
            return try_lock();
        typedef typename boost::common_type<typename Time::duration,
          typename Clock::duration>::type D;
        /* auto */ D d = t - Clock::now();
        microseconds us = duration_cast<microseconds>(d);
        SysTime st = system_clock::now() + us;
        std::cout << "try_lock_until ";
        __print_time(st);
        std::cout << " which is " << (st - system_clock::now()).count()
          << " microseconds away\n";
        return true;
    }
};

struct condition_variable
{
    template <class Rep, class Period>
        bool wait_for(mutex&, const boost::chrono::duration<Rep, Period>& d)
        {
            boost::chrono::microseconds t = boost::chrono::duration_cast<boost::chrono::microseconds>(d);
            std::cout << "wait_for " << t.count() << " microseconds\n";
            return true;
        }

    template <class Clock, class Duration>
    bool wait_until(mutex&, const boost::chrono::time_point<Clock, Duration>& t)
    {
        using namespace boost::chrono;
        typedef time_point<Clock, Duration> Time;
        typedef system_clock::time_point SysTime;
        if (t <= Clock::now())
            return false;
        typedef typename boost::common_type<typename Time::duration,
          typename Clock::duration>::type D;
        /* auto */ D d = t - Clock::now();
        microseconds us = duration_cast<microseconds>(d);
        SysTime st = system_clock::now() + us;
         std::cout << "wait_until     ";
        __print_time(st);
        std::cout << " which is " << (st - system_clock::now()).count()
          << " microseconds away\n";
        return true;
    }
};

} // namespace std

//////////////////////////////////////////////////////////
//////////// Simple sleep and wait examples //////////////
//////////////////////////////////////////////////////////

std::mutex m;
std::timed_mutex mut;
std::condition_variable cv;

void basic_examples()
{
    std::cout << "Running basic examples\n";
    using namespace std;
    using namespace boost::chrono;
    system_clock::time_point time_limit = system_clock::now() + seconds(4) + milliseconds(500);
    this_thread::sleep_for(seconds(3));
    this_thread::sleep_for(nanoseconds(300));
    this_thread::sleep_until(time_limit);
//    this_thread::sleep_for(time_limit);  // desired compile-time error
//    this_thread::sleep_until(seconds(3)); // desired compile-time error
    mut.try_lock_for(milliseconds(30));
    mut.try_lock_until(time_limit);
//    mut.try_lock_for(time_limit);        // desired compile-time error
//    mut.try_lock_until(milliseconds(30)); // desired compile-time error
    cv.wait_for(m, minutes(1));    // real code would put this in a loop
    cv.wait_until(m, time_limit);  // real code would put this in a loop
    // For those who prefer floating point
    this_thread::sleep_for(duration<double>(0.25));
    this_thread::sleep_until(system_clock::now() + duration<double>(1.5));
}

//////////////////////////////////////////////////////////
//////////////////// User1 Example ///////////////////////
//////////////////////////////////////////////////////////

namespace User1
{
// Example type-safe "physics" code interoperating with boost::chrono::duration types
//  and taking advantage of the boost::ratio infrastructure and design philosophy.

// length - mimics boost::chrono::duration except restricts representation to double.
//    Uses boost::ratio facilities for length units conversions.

template <class Ratio>
class length
{
public:
    typedef Ratio ratio;
private:
    double len_;
public:

    length() : len_(1) {}
    length(const double& len) : len_(len) {}

    // conversions
    template <class R>
    length(const length<R>& d)
            : len_(d.count() * boost::ratio_divide<Ratio, R>::type::den /
                               boost::ratio_divide<Ratio, R>::type::num) {}

    // observer

    double count() const {return len_;}

    // arithmetic

    length& operator+=(const length& d) {len_ += d.count(); return *this;}
    length& operator-=(const length& d) {len_ -= d.count(); return *this;}

    length operator+() const {return *this;}
    length operator-() const {return length(-len_);}

    length& operator*=(double rhs) {len_ *= rhs; return *this;}
    length& operator/=(double rhs) {len_ /= rhs; return *this;}
};

// Sparse sampling of length units
typedef length<boost::ratio<1> >          meter;        // set meter as "unity"
typedef length<boost::centi>              centimeter;   // 1/100 meter
typedef length<boost::kilo>               kilometer;    // 1000  meters
typedef length<boost::ratio<254, 10000> > inch;         // 254/10000 meters
// length takes ratio instead of two integral types so that definitions can be made like so:
typedef length<boost::ratio_multiply<boost::ratio<12>, inch::ratio>::type>   foot;  // 12 inchs
typedef length<boost::ratio_multiply<boost::ratio<5280>, foot::ratio>::type> mile;  // 5280 feet

// Need a floating point definition of seconds
typedef boost::chrono::duration<double> seconds;                         // unity
// Demo of (scientific) support for sub-nanosecond resolutions
typedef boost::chrono::duration<double,  boost::pico> picosecond;  // 10^-12 seconds
typedef boost::chrono::duration<double, boost::femto> femtosecond; // 10^-15 seconds
typedef boost::chrono::duration<double,  boost::atto> attosecond;  // 10^-18 seconds

// A very brief proof-of-concept for SIUnits-like library
//  Hard-wired to floating point seconds and meters, but accepts other units (shown in testUser1())
template <class R1, class R2>
class quantity
{
    double q_;
public:
    quantity() : q_(1) {}

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

template <>
class quantity<boost::ratio<1>, boost::ratio<0> >
{
    double q_;
public:
    quantity() : q_(1) {}
    quantity(seconds d) : q_(d.count()) {}  // note:  only User1::seconds needed here

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

template <>
class quantity<boost::ratio<0>, boost::ratio<1> >
{
    double q_;
public:
    quantity() : q_(1) {}
    quantity(meter d) : q_(d.count()) {}  // note:  only User1::meter needed here

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

template <>
class quantity<boost::ratio<0>, boost::ratio<0> >
{
    double q_;
public:
    quantity() : q_(1) {}
    quantity(double d) : q_(d) {}

    double get() const {return q_;}
    void set(double q) {q_ = q;}
};

// Example SI-Units
typedef quantity<boost::ratio<0>, boost::ratio<0> >  Scalar;
typedef quantity<boost::ratio<1>, boost::ratio<0> >  Time;         // second
typedef quantity<boost::ratio<0>, boost::ratio<1> >  Distance;     // meter
typedef quantity<boost::ratio<-1>, boost::ratio<1> > Speed;        // meter/second
typedef quantity<boost::ratio<-2>, boost::ratio<1> > Acceleration; // meter/second^2

template <class R1, class R2, class R3, class R4>
quantity<typename boost::ratio_subtract<R1, R3>::type, typename boost::ratio_subtract<R2, R4>::type>
operator/(const quantity<R1, R2>& x, const quantity<R3, R4>& y)
{
    typedef quantity<typename boost::ratio_subtract<R1, R3>::type, typename boost::ratio_subtract<R2, R4>::type> R;
    R r;
    r.set(x.get() / y.get());
    return r;
}

template <class R1, class R2, class R3, class R4>
quantity<typename boost::ratio_add<R1, R3>::type, typename boost::ratio_add<R2, R4>::type>
operator*(const quantity<R1, R2>& x, const quantity<R3, R4>& y)
{
    typedef quantity<typename boost::ratio_add<R1, R3>::type, typename boost::ratio_add<R2, R4>::type> R;
    R r;
    r.set(x.get() * y.get());
    return r;
}

template <class R1, class R2>
quantity<R1, R2>
operator+(const quantity<R1, R2>& x, const quantity<R1, R2>& y)
{
    typedef quantity<R1, R2> R;
    R r;
    r.set(x.get() + y.get());
    return r;
}

template <class R1, class R2>
quantity<R1, R2>
operator-(const quantity<R1, R2>& x, const quantity<R1, R2>& y)
{
    typedef quantity<R1, R2> R;
    R r;
    r.set(x.get() - y.get());
    return r;
}

// Example type-safe physics function
Distance
compute_distance(Speed v0, Time t, Acceleration a)
{
    return v0 * t + Scalar(.5) * a * t * t;  // if a units mistake is made here it won't compile
}

} // User1


// Exercise example type-safe physics function and show interoperation
// of custom time durations (User1::seconds) and standard time durations (std::hours).
// Though input can be arbitrary (but type-safe) units, output is always in SI-units
//   (a limitation of the simplified Units lib demoed here).
void testUser1()
{
    std::cout << "*************\n";
    std::cout << "* testUser1 *\n";
    std::cout << "*************\n";
    User1::Distance d( User1::mile(110) );
    User1::Time t( boost::chrono::hours(2) );
    User1::Speed s = d / t;
    std::cout << "Speed = " << s.get() << " meters/sec\n";
    User1::Acceleration a = User1::Distance( User1::foot(32.2) ) / User1::Time() / User1::Time();
    std::cout << "Acceleration = " << a.get() << " meters/sec^2\n";
    User1::Distance df = compute_distance(s, User1::Time( User1::seconds(0.5) ), a);
    std::cout << "Distance = " << df.get() << " meters\n";
    std::cout << "There are " << User1::mile::ratio::den << '/' << User1::mile::ratio::num << " miles/meter";
    User1::meter mt = 1;
    User1::mile mi = mt;
    std::cout << " which is approximately " << mi.count() << '\n';
    std::cout << "There are " << User1::mile::ratio::num << '/' << User1::mile::ratio::den << " meters/mile";
    mi = 1;
    mt = mi;
    std::cout << " which is approximately " << mt.count() << '\n';
    User1::attosecond as(1);
    User1::seconds sec = as;
    std::cout << "1 attosecond is " << sec.count() << " seconds\n";
    std::cout << "sec = as;  // compiles\n";
    sec = User1::seconds(1);
    as = sec;
    std::cout << "1 second is " << as.count() << " attoseconds\n";
    std::cout << "as = sec;  // compiles\n";
    std::cout << "\n";
}

//////////////////////////////////////////////////////////
//////////////////// User2 Example ///////////////////////
//////////////////////////////////////////////////////////

// Demonstrate User2:
// A "saturating" signed integral type  is developed.  This type has +/- infinity and a nan
// (like IEEE floating point) but otherwise obeys signed integral arithmetic.
// This class is subsequently used as the rep in boost::chrono::duration to demonstrate a
// duration class that does not silently ignore overflow.

namespace User2
{

template <class I>
class saturate
{
public:
    typedef I int_type;

    static const int_type nan = int_type(int_type(1) << (sizeof(int_type) * CHAR_BIT - 1));
    static const int_type neg_inf = nan + 1;
    static const int_type pos_inf = -neg_inf;
private:
    int_type i_;

//     static_assert(std::is_integral<int_type>::value && std::is_signed<int_type>::value,
//                   "saturate only accepts signed integral types");
//     static_assert(nan == -nan && neg_inf < pos_inf,
//                   "saturate assumes two's complement hardware for signed integrals");

public:
    saturate() : i_(nan) {}
    explicit saturate(int_type i) : i_(i) {}
    // explicit
       operator int_type() const;

    saturate& operator+=(saturate x);
    saturate& operator-=(saturate x) {return *this += -x;}
    saturate& operator*=(saturate x);
    saturate& operator/=(saturate x);
    saturate& operator%=(saturate x);

    saturate  operator- () const {return saturate(-i_);}
    saturate& operator++()       {*this += saturate(int_type(1)); return *this;}
    saturate  operator++(int)    {saturate tmp(*this); ++(*this); return tmp;}
    saturate& operator--()       {*this -= saturate(int_type(1)); return *this;}
    saturate  operator--(int)    {saturate tmp(*this); --(*this); return tmp;}

    friend saturate operator+(saturate x, saturate y) {return x += y;}
    friend saturate operator-(saturate x, saturate y) {return x -= y;}
    friend saturate operator*(saturate x, saturate y) {return x *= y;}
    friend saturate operator/(saturate x, saturate y) {return x /= y;}
    friend saturate operator%(saturate x, saturate y) {return x %= y;}

    friend bool operator==(saturate x, saturate y)
    {
        if (x.i_ == nan || y.i_ == nan)
            return false;
        return x.i_ == y.i_;
    }

    friend bool operator!=(saturate x, saturate y) {return !(x == y);}

    friend bool operator<(saturate x, saturate y)
    {
        if (x.i_ == nan || y.i_ == nan)
            return false;
        return x.i_ < y.i_;
    }

    friend bool operator<=(saturate x, saturate y)
    {
        if (x.i_ == nan || y.i_ == nan)
            return false;
        return x.i_ <= y.i_;
    }

    friend bool operator>(saturate x, saturate y)
    {
        if (x.i_ == nan || y.i_ == nan)
            return false;
        return x.i_ > y.i_;
    }

    friend bool operator>=(saturate x, saturate y)
    {
        if (x.i_ == nan || y.i_ == nan)
            return false;
        return x.i_ >= y.i_;
    }

    friend std::ostream& operator<<(std::ostream& os, saturate s)
    {
        switch (s.i_)
        {
        case pos_inf:
            return os << "inf";
        case nan:
            return os << "nan";
        case neg_inf:
            return os << "-inf";
        };
        return os << s.i_;
    }
};

template <class I>
saturate<I>::operator int_type() const
{
    switch (i_)
    {
    case nan:
    case neg_inf:
    case pos_inf:
        throw std::out_of_range("saturate special value can not convert to int_type");
    }
    return i_;
}

template <class I>
saturate<I>&
saturate<I>::operator+=(saturate x)
{
    switch (i_)
    {
    case pos_inf:
        switch (x.i_)
        {
        case neg_inf:
        case nan:
            i_ = nan;
        }
        return *this;
    case nan:
        return *this;
    case neg_inf:
        switch (x.i_)
        {
        case pos_inf:
        case nan:
            i_ = nan;
        }
        return *this;
    }
    switch (x.i_)
    {
    case pos_inf:
    case neg_inf:
    case nan:
        i_ = x.i_;
        return *this;
    }
    if (x.i_ >= 0)
    {
        if (i_ < pos_inf - x.i_)
            i_ += x.i_;
        else
            i_ = pos_inf;
        return *this;
    }
    if (i_ > neg_inf - x.i_)
        i_ += x.i_;
    else
        i_ = neg_inf;
    return *this;
}

template <class I>
saturate<I>&
saturate<I>::operator*=(saturate x)
{
    switch (i_)
    {
    case 0:
        switch (x.i_)
        {
        case pos_inf:
        case neg_inf:
        case nan:
            i_ = nan;
        }
        return *this;
    case pos_inf:
        switch (x.i_)
        {
        case nan:
        case 0:
            i_ = nan;
            return *this;
        }
        if (x.i_ < 0)
            i_ = neg_inf;
        return *this;
    case nan:
        return *this;
    case neg_inf:
        switch (x.i_)
        {
        case nan:
        case 0:
            i_ = nan;
            return *this;
        }
        if (x.i_ < 0)
            i_ = pos_inf;
        return *this;
    }
    switch (x.i_)
    {
    case 0:
        i_ = 0;
        return *this;
    case nan:
        i_ = nan;
        return *this;
    case pos_inf:
        if (i_ < 0)
            i_ = neg_inf;
        else
            i_ = pos_inf;
        return *this;
    case neg_inf:
        if (i_ < 0)
            i_ = pos_inf;
        else
            i_ = neg_inf;
        return *this;
    }
    int s = (i_ < 0 ? -1 : 1) * (x.i_ < 0 ? -1 : 1);
    i_ = i_ < 0 ? -i_ : i_;
    int_type x_i_ = x.i_ < 0 ? -x.i_ : x.i_;
    if (i_ <= pos_inf / x_i_)
        i_ *= x_i_;
    else
        i_ = pos_inf;
    i_ *= s;
    return *this;
}

template <class I>
saturate<I>&
saturate<I>::operator/=(saturate x)
{
    switch (x.i_)
    {
    case pos_inf:
    case neg_inf:
        switch (i_)
        {
        case pos_inf:
        case neg_inf:
        case nan:
            i_ = nan;
            break;
        default:
            i_ = 0;
            break;
        }
        return *this;
    case nan:
        i_ = nan;
        return *this;
    case 0:
        switch (i_)
        {
        case pos_inf:
        case neg_inf:
        case nan:
            return *this;
        case 0:
            i_ = nan;
            return *this;
        }
        if (i_ > 0)
            i_ = pos_inf;
        else
            i_ = neg_inf;
        return *this;
    }
    switch (i_)
    {
    case 0:
    case nan:
        return *this;
    case pos_inf:
    case neg_inf:
        if (x.i_ < 0)
            i_ = -i_;
        return *this;
    }
    i_ /= x.i_;
    return *this;
}

template <class I>
saturate<I>&
saturate<I>::operator%=(saturate x)
{
//    *this -= *this / x * x;  // definition
    switch (x.i_)
    {
    case nan:
    case neg_inf:
    case 0:
    case pos_inf:
        i_ = nan;
        return *this;
    }
    switch (i_)
    {
    case neg_inf:
    case pos_inf:
        i_ = nan;
    case nan:
        return *this;
    }
    i_ %= x.i_;
    return *this;
}

// Demo overflow-safe integral durations ranging from picoseconds resolution to millennium resolution
typedef boost::chrono::duration<saturate<long long>, boost::pico                 > picoseconds;
typedef boost::chrono::duration<saturate<long long>, boost::nano                 > nanoseconds;
typedef boost::chrono::duration<saturate<long long>, boost::micro                > microseconds;
typedef boost::chrono::duration<saturate<long long>, boost::milli                > milliseconds;
typedef boost::chrono::duration<saturate<long long>                            > seconds;
typedef boost::chrono::duration<saturate<long long>, boost::ratio<         60LL> > minutes;
typedef boost::chrono::duration<saturate<long long>, boost::ratio<       3600LL> > hours;
typedef boost::chrono::duration<saturate<long long>, boost::ratio<      86400LL> > days;
typedef boost::chrono::duration<saturate<long long>, boost::ratio<   31556952LL> > years;
typedef boost::chrono::duration<saturate<long long>, boost::ratio<31556952000LL> > millennium;

}  // User2

// Demonstrate custom promotion rules (needed only if there are no implicit conversions)
namespace User2 { namespace detail {

template <class T1, class T2, bool = boost::is_integral<T1>::value>
struct promote_helper;

template <class T1, class T2>
struct promote_helper<T1, saturate<T2>, true>  // integral
{
    typedef typename boost::common_type<T1, T2>::type rep;
    typedef User2::saturate<rep> type;
};

template <class T1, class T2>
struct promote_helper<T1, saturate<T2>, false>  // floating
{
    typedef T1 type;
};

} }

namespace boost
{

template <class T1, class T2>
struct common_type<User2::saturate<T1>, User2::saturate<T2> >
{
    typedef typename common_type<T1, T2>::type rep;
    typedef User2::saturate<rep> type;
};

template <class T1, class T2>
struct common_type<T1, User2::saturate<T2> >
    : User2::detail::promote_helper<T1, User2::saturate<T2> > {};

template <class T1, class T2>
struct common_type<User2::saturate<T1>, T2>
    : User2::detail::promote_helper<T2, User2::saturate<T1> > {};


// Demonstrate specialization of duration_values:

namespace chrono {

template <class I>
struct duration_values<User2::saturate<I> >
{
    typedef User2::saturate<I> Rep;
public:
    static Rep zero() {return Rep(0);}
    static Rep max BOOST_PREVENT_MACRO_SUBSTITUTION ()  {return Rep(Rep::pos_inf-1);}
    static Rep min BOOST_PREVENT_MACRO_SUBSTITUTION ()  {return -(max) ();}
};

}  // namespace chrono

}  // namespace boost


void testUser2()
{
    std::cout << "*************\n";
    std::cout << "* testUser2 *\n";
    std::cout << "*************\n";
    using namespace User2;
    typedef seconds::rep sat;
    years yr(sat(100));
    std::cout << "100 years expressed as years = " << yr.count() << '\n';
    nanoseconds ns = yr;
    std::cout << "100 years expressed as nanoseconds = " << ns.count() << '\n';
    ns += yr;
    std::cout << "200 years expressed as nanoseconds = " << ns.count() << '\n';
    ns += yr;
    std::cout << "300 years expressed as nanoseconds = " << ns.count() << '\n';
//    yr = ns;  // does not compile
    std::cout << "yr = ns;  // does not compile\n";
//    picoseconds ps1 = yr;  // does not compile, compile-time overflow in ratio arithmetic
    std::cout << "ps = yr;  // does not compile\n";
    ns = yr;
    picoseconds ps = ns;
    std::cout << "100 years expressed as picoseconds = " << ps.count() << '\n';
    ps = ns / sat(1000);
    std::cout << "0.1 years expressed as picoseconds = " << ps.count() << '\n';
    yr = years(sat(-200000000));
    std::cout << "200 million years ago encoded in years: " << yr.count() << '\n';
    days d = boost::chrono::duration_cast<days>(yr);
    std::cout << "200 million years ago encoded in days: " << d.count() << '\n';
    millennium c = boost::chrono::duration_cast<millennium>(yr);
    std::cout << "200 million years ago encoded in millennium: " << c.count() << '\n';
    std::cout << "Demonstrate \"uninitialized protection\" behavior:\n";
    seconds sec;
    for (++sec; sec < seconds(sat(10)); ++sec)
        ;
    std::cout << sec.count() << '\n';
    std::cout << "\n";
}

void testStdUser()
{
    std::cout << "***************\n";
    std::cout << "* testStdUser *\n";
    std::cout << "***************\n";
    using namespace boost::chrono;
    hours hr = hours(100);
    std::cout << "100 hours expressed as hours = " << hr.count() << '\n';
    nanoseconds ns = hr;
    std::cout << "100 hours expressed as nanoseconds = " << ns.count() << '\n';
    ns += hr;
    std::cout << "200 hours expressed as nanoseconds = " << ns.count() << '\n';
    ns += hr;
    std::cout << "300 hours expressed as nanoseconds = " << ns.count() << '\n';
//    hr = ns;  // does not compile
    std::cout << "hr = ns;  // does not compile\n";
//    hr * ns;  // does not compile
    std::cout << "hr * ns;  // does not compile\n";
    duration<double> fs(2.5);
    std::cout << "duration<double> has count() = " << fs.count() << '\n';
//    seconds sec = fs;  // does not compile
    std::cout << "seconds sec = duration<double> won't compile\n";
    seconds sec = duration_cast<seconds>(fs);
    std::cout << "seconds has count() = " << sec.count() << '\n';
    std::cout << "\n";
}

//  timeval clock demo
//     Demonstrate the use of a timeval-like struct to be used as the representation
//     type for both duraiton and time_point.

namespace timeval_demo
{

class xtime {
private:
    long tv_sec;
    long tv_usec;

    void fixup() {
        if (tv_usec < 0) {
            tv_usec += 1000000;
            --tv_sec;
        }
    }

public:

    explicit xtime(long sec, long usec) {
        tv_sec = sec;
        tv_usec = usec;
        if (tv_usec < 0 || tv_usec >= 1000000) {
            tv_sec += tv_usec / 1000000;
            tv_usec %= 1000000;
            fixup();
        }
    }

    explicit xtime(long long usec)
    {
        tv_usec = static_cast<long>(usec % 1000000);
        tv_sec  = static_cast<long>(usec / 1000000);
        fixup();
    }

    // explicit
    operator long long() const {return static_cast<long long>(tv_sec) * 1000000 + tv_usec;}

    xtime& operator += (xtime rhs) {
        tv_sec += rhs.tv_sec;
        tv_usec += rhs.tv_usec;
        if (tv_usec >= 1000000) {
            tv_usec -= 1000000;
            ++tv_sec;
        }
        return *this;
    }

    xtime& operator -= (xtime rhs) {
        tv_sec -= rhs.tv_sec;
        tv_usec -= rhs.tv_usec;
        fixup();
        return *this;
    }

    xtime& operator %= (xtime rhs) {
        long long t = tv_sec * 1000000 + tv_usec;
        long long r = rhs.tv_sec * 1000000 + rhs.tv_usec;
        t %= r;
        tv_sec = static_cast<long>(t / 1000000);
        tv_usec = static_cast<long>(t % 1000000);
        fixup();
        return *this;
    }

    friend xtime operator+(xtime x, xtime y) {return x += y;}
    friend xtime operator-(xtime x, xtime y) {return x -= y;}
    friend xtime operator%(xtime x, xtime y) {return x %= y;}

    friend bool operator==(xtime x, xtime y)
        { return (x.tv_sec == y.tv_sec && x.tv_usec == y.tv_usec); }

    friend bool operator<(xtime x, xtime y) {
        if (x.tv_sec == y.tv_sec)
            return (x.tv_usec < y.tv_usec);
        return (x.tv_sec < y.tv_sec);
    }

    friend bool operator!=(xtime x, xtime y) { return !(x == y); }
    friend bool operator> (xtime x, xtime y) { return y < x; }
    friend bool operator<=(xtime x, xtime y) { return !(y < x); }
    friend bool operator>=(xtime x, xtime y) { return !(x < y); }

    friend std::ostream& operator<<(std::ostream& os, xtime x)
        {return os << '{' << x.tv_sec << ',' << x.tv_usec << '}';}
};

class xtime_clock
{
public:
    typedef xtime                                  rep;
    typedef boost::micro                           period;
    typedef boost::chrono::duration<rep, period>   duration;
    typedef boost::chrono::time_point<xtime_clock> time_point;

    static time_point now();
};

xtime_clock::time_point
xtime_clock::now()
{
    time_point t(duration(xtime(0)));
    gettimeofday((timeval*)&t, 0);
    return t;
}

void test_xtime_clock()
{
    using namespace boost::chrono;
    std::cout << "timeval_demo system clock test\n";
    std::cout << "sizeof xtime_clock::time_point = " << sizeof(xtime_clock::time_point) << '\n';
    std::cout << "sizeof xtime_clock::duration = " << sizeof(xtime_clock::duration) << '\n';
    std::cout << "sizeof xtime_clock::rep = " << sizeof(xtime_clock::rep) << '\n';
    xtime_clock::duration delay(milliseconds(5));
    xtime_clock::time_point start = xtime_clock::now();
    while (xtime_clock::now() - start <= delay)
    {
    }
    xtime_clock::time_point stop = xtime_clock::now();
    xtime_clock::duration elapsed = stop - start;
    std::cout << "paused " << nanoseconds(elapsed).count() << " nanoseconds\n";
}

}  // timeval_demo

// Handle duration with resolution not known until run time

namespace runtime_resolution
{

class duration
{
public:
    typedef long long rep;
private:
    rep rep_;

    static const double ticks_per_nanosecond;

public:
    typedef boost::chrono::duration<double, boost::nano> tonanosec;

    duration() {} // = default;
    explicit duration(const rep& r) : rep_(r) {}

    // conversions
    explicit duration(const tonanosec& d)
            : rep_(static_cast<rep>(d.count() * ticks_per_nanosecond)) {}

    // explicit
       operator tonanosec() const {return tonanosec(rep_/ticks_per_nanosecond);}

    // observer

    rep count() const {return rep_;}

    // arithmetic

    duration& operator+=(const duration& d) {rep_ += d.rep_; return *this;}
    duration& operator-=(const duration& d) {rep_ += d.rep_; return *this;}
    duration& operator*=(rep rhs)           {rep_ *= rhs; return *this;}
    duration& operator/=(rep rhs)           {rep_ /= rhs; return *this;}

    duration  operator+() const {return *this;}
    duration  operator-() const {return duration(-rep_);}
    duration& operator++()      {++rep_; return *this;}
    duration  operator++(int)   {return duration(rep_++);}
    duration& operator--()      {--rep_; return *this;}
    duration  operator--(int)   {return duration(rep_--);}

    friend duration operator+(duration x, duration y) {return x += y;}
    friend duration operator-(duration x, duration y) {return x -= y;}
    friend duration operator*(duration x, rep y)      {return x *= y;}
    friend duration operator*(rep x, duration y)      {return y *= x;}
    friend duration operator/(duration x, rep y)      {return x /= y;}

    friend bool operator==(duration x, duration y) {return x.rep_ == y.rep_;}
    friend bool operator!=(duration x, duration y) {return !(x == y);}
    friend bool operator< (duration x, duration y) {return x.rep_ < y.rep_;}
    friend bool operator<=(duration x, duration y) {return !(y < x);}
    friend bool operator> (duration x, duration y) {return y < x;}
    friend bool operator>=(duration x, duration y) {return !(x < y);}
};

static
double
init_duration()
{
    //mach_timebase_info_data_t MachInfo;
    //mach_timebase_info(&MachInfo);
    //return static_cast<double>(MachInfo.denom) / MachInfo.numer;
    return static_cast<double>(1) / 1000; // Windows FILETIME is 1 per microsec
}

const double duration::ticks_per_nanosecond = init_duration();

class clock;

class time_point
{
public:
    typedef runtime_resolution::clock clock;
    typedef long long rep;
private:
    rep rep_;


    rep count() const {return rep_;}
public:

    time_point() : rep_(0) {}
    explicit time_point(const duration& d)
        : rep_(d.count()) {}

    // arithmetic

    time_point& operator+=(const duration& d) {rep_ += d.count(); return *this;}
    time_point& operator-=(const duration& d) {rep_ -= d.count(); return *this;}

    friend time_point operator+(time_point x, duration y) {return x += y;}
    friend time_point operator+(duration x, time_point y) {return y += x;}
    friend time_point operator-(time_point x, duration y) {return x -= y;}
    friend duration operator-(time_point x, time_point y) {return duration(x.rep_ - y.rep_);}
};

class clock
{
public:
    typedef duration::rep rep;
    typedef runtime_resolution::duration duration;
    typedef runtime_resolution::time_point time_point;

    static time_point now()
    {
      timeval tv;
      gettimeofday( &tv, 0 );
      return time_point(duration((static_cast<rep>(tv.tv_sec)<<32) | tv.tv_usec));
    }
};

void test()
{
    using namespace boost::chrono;
    std::cout << "runtime_resolution test\n";
    clock::duration delay(boost::chrono::milliseconds(5));
    clock::time_point start = clock::now();
    while (clock::now() - start <= delay)
      ;
    clock::time_point stop = clock::now();
    clock::duration elapsed = stop - start;
    std::cout << "paused " << nanoseconds(duration_cast<nanoseconds>(duration::tonanosec(elapsed))).count()
                           << " nanoseconds\n";
}

}  // runtime_resolution

// miscellaneous tests and demos:


using namespace boost::chrono;

void physics_function(duration<double> d)
{
    std::cout << "d = " << d.count() << '\n';
}

void drive_physics_function()
{
    physics_function(nanoseconds(3));
    physics_function(hours(3));
    physics_function(duration<double>(2./3));
    std::cout.precision(16);
    physics_function( hours(3) + nanoseconds(-3) );
}

void test_range()
{
    using namespace boost::chrono;
    hours h1 = hours(24 * ( 365 * 292 + 292/4));
    nanoseconds n1 = h1 + nanoseconds(1);
    nanoseconds delta = n1 - h1;
    std::cout << "292 years of hours = " << h1.count() << "hr\n";
    std::cout << "Add a nanosecond = " << n1.count() << "ns\n";
    std::cout << "Find the difference = " << delta.count() << "ns\n";
}

void test_extended_range()
{
    using namespace boost::chrono;
    hours h1 = hours(24 * ( 365 * 244000 + 244000/4));
    /*auto*/ microseconds u1 = h1 + microseconds(1);
    /*auto*/ microseconds delta = u1 - h1;
    std::cout << "244,000 years of hours = " << h1.count() << "hr\n";
    std::cout << "Add a microsecond = " << u1.count() << "us\n";
    std::cout << "Find the difference = " << delta.count() << "us\n";
}

template <class Rep, class Period>
void inspect_duration(boost::chrono::duration<Rep, Period> d, const std::string& name)
{
    typedef boost::chrono::duration<Rep, Period> Duration;
    std::cout << "********* " << name << " *********\n";
    std::cout << "The period of " << name << " is " << (double)Period::num/Period::den << " seconds.\n";
    std::cout << "The frequency of " << name << " is " << (double)Period::den/Period::num << " Hz.\n";
    std::cout << "The representation is ";
    if (boost::is_floating_point<Rep>::value)
    {
        std::cout << "floating point\n";
        std::cout << "The precision is the most significant ";
        std::cout << std::numeric_limits<Rep>::digits10 << " decimal digits.\n";
    }
    else if (boost::is_integral<Rep>::value)
    {
        std::cout << "integral\n";
        d = Duration(Rep(1));
        boost::chrono::duration<double> dsec = d;
        std::cout << "The precision is " << dsec.count() << " seconds.\n";
    }
    else
    {
        std::cout << "a class type\n";
        d = Duration(Rep(1));
        boost::chrono::duration<double> dsec = d;
        std::cout << "The precision is " << dsec.count() << " seconds.\n";
    }
    d = Duration((std::numeric_limits<Rep>::max)());
    using namespace boost::chrono;
    using namespace std;
    typedef duration<double, boost::ratio_multiply<boost::ratio<24*3652425,10000>, hours::period>::type> Years;
    Years years = d;
    std::cout << "The range is +/- " << years.count() << " years.\n";
    std::cout << "sizeof(" << name << ") = " << sizeof(d) << '\n';
}

void inspect_all()
{
    using namespace boost::chrono;
    std::cout.precision(6);
    inspect_duration(nanoseconds(), "nanoseconds");
    inspect_duration(microseconds(), "microseconds");
    inspect_duration(milliseconds(), "milliseconds");
    inspect_duration(seconds(), "seconds");
    inspect_duration(minutes(), "minutes");
    inspect_duration(hours(), "hours");
    inspect_duration(duration<double>(), "duration<double>");
}

void test_milliseconds()
{
    using namespace boost::chrono;
    milliseconds ms(250);
    ms += milliseconds(1);
    milliseconds ms2(150);
    milliseconds msdiff = ms - ms2;
    if (msdiff == milliseconds(101))
        std::cout << "success\n";
    else
        std::cout << "failure: " << msdiff.count() << '\n';
}

    using namespace std;
    using namespace boost::chrono;

// Example round_up utility:  converts d to To, rounding up for inexact conversions
//   Being able to *easily* write this function is a major feature!
template <class To, class Rep, class Period>
To
round_up(duration<Rep, Period> d)
{
    To result = duration_cast<To>(d);
    if (result < d)
        ++result;
    return result;
}

// demonstrate interaction with xtime-like facility:

using namespace boost::chrono;

struct xtime
{
    long sec;
    unsigned long usec;
};

template <class Rep, class Period>
xtime
to_xtime_truncate(duration<Rep, Period> d)
{
    xtime xt;
    xt.sec = static_cast<long>(duration_cast<seconds>(d).count());
    xt.usec = static_cast<long>(duration_cast<microseconds>(d - seconds(xt.sec)).count());
    return xt;
}

template <class Rep, class Period>
xtime
to_xtime_round_up(duration<Rep, Period> d)
{
    xtime xt;
    xt.sec = static_cast<long>(duration_cast<seconds>(d).count());
    xt.usec = static_cast<unsigned long>(round_up<microseconds>(d - seconds(xt.sec)).count());
    return xt;
}

microseconds
from_xtime(xtime xt)
{
    return seconds(xt.sec) + microseconds(xt.usec);
}

void print(xtime xt)
{
    cout << '{' << xt.sec << ',' << xt.usec << "}\n";
}

void test_with_xtime()
{
    cout << "test_with_xtime\n";
    xtime xt = to_xtime_truncate(seconds(3) + milliseconds(251));
    print(xt);
    milliseconds ms = duration_cast<milliseconds>(from_xtime(xt));
    cout << ms.count() << " milliseconds\n";
    xt = to_xtime_round_up(ms);
    print(xt);
    xt = to_xtime_truncate(seconds(3) + nanoseconds(999));
    print(xt);
    xt = to_xtime_round_up(seconds(3) + nanoseconds(999));
    print(xt);
}

void test_system_clock()
{
    cout << "system_clock test" << endl;
    system_clock::duration delay = milliseconds(5);
    system_clock::time_point start = system_clock::now();
    while (system_clock::now() - start <= delay)
        ;
    system_clock::time_point stop = system_clock::now();
    system_clock::duration elapsed = stop - start;
    cout << "paused " << nanoseconds(elapsed).count() << " nanoseconds\n";
    start = system_clock::now();
    stop = system_clock::now();
    cout << "system_clock resolution estimate: " << nanoseconds(stop-start).count() << " nanoseconds\n";
}

void test_steady_clock()
{
    cout << "steady_clock test" << endl;
    steady_clock::duration delay = milliseconds(5);
    steady_clock::time_point start = steady_clock::now();
    while (steady_clock::now() - start <= delay)
        ;
    steady_clock::time_point stop = steady_clock::now();
    steady_clock::duration elapsed = stop - start;
    cout << "paused " << nanoseconds(elapsed).count() << " nanoseconds\n";
    start = steady_clock::now();
    stop = steady_clock::now();
    cout << "steady_clock resolution estimate: " << nanoseconds(stop-start).count() << " nanoseconds\n";
}

void test_hi_resolution_clock()
{
    cout << "high_resolution_clock test" << endl;
    high_resolution_clock::duration delay = milliseconds(5);
    high_resolution_clock::time_point start = high_resolution_clock::now();
    while (high_resolution_clock::now() - start <= delay)
      ;
    high_resolution_clock::time_point stop = high_resolution_clock::now();
    high_resolution_clock::duration elapsed = stop - start;
    cout << "paused " << nanoseconds(elapsed).count() << " nanoseconds\n";
    start = high_resolution_clock::now();
    stop = high_resolution_clock::now();
    cout << "high_resolution_clock resolution estimate: " << nanoseconds(stop-start).count() << " nanoseconds\n";
}

//void test_mixed_clock()
//{
//    cout << "mixed clock test" << endl;
//    high_resolution_clock::time_point hstart = high_resolution_clock::now();
//    cout << "Add 5 milliseconds to a high_resolution_clock::time_point\n";
//    steady_clock::time_point mend = hstart + milliseconds(5);
//    bool b = hstart == mend;
//    system_clock::time_point sstart = system_clock::now();
//    std::cout << "Subtracting system_clock::time_point from steady_clock::time_point doesn't compile\n";
////  mend - sstart; // doesn't compile
//    cout << "subtract high_resolution_clock::time_point from steady_clock::time_point"
//            " and add that to a system_clock::time_point\n";
//    system_clock::time_point send = sstart + duration_cast<system_clock::duration>(mend - hstart);
//    cout << "subtract two system_clock::time_point's and output that in microseconds:\n";
//    microseconds ms = send - sstart;
//    cout << ms.count() << " microseconds\n";
//}
//
//void test_c_mapping()
//{
//    cout << "C map test\n";
//    using namespace boost::chrono;
//    system_clock::time_point t1 = system_clock::now();
//    std::time_t c_time = system_clock::to_time_t(t1);
//    std::tm* tmptr = std::localtime(&c_time);
//    std::cout << "It is now " << tmptr->tm_hour << ':' << tmptr->tm_min << ':' << tmptr->tm_sec << ' '
//              << tmptr->tm_year + 1900 << '-' << tmptr->tm_mon + 1 << '-' << tmptr->tm_mday << '\n';
//    c_time = std::mktime(tmptr);
//    system_clock::time_point t2 = system_clock::from_time_t(c_time);
//    microseconds ms = t1 - t2;
//    std::cout << "Round-tripping through the C interface truncated the precision by " << ms.count() << " microseconds\n";
//}

void test_duration_division()
{
    cout << hours(3) / milliseconds(5) << '\n';
    cout << milliseconds(5) / hours(3) << '\n';
    cout << hours(1) / milliseconds(1) << '\n';
}

namespace I_dont_like_the_default_duration_behavior
{

// Here's how you override the duration's default constructor to do anything you want (in this case zero)

template <class R>
class zero_default
{
public:
    typedef R rep;

private:
    rep rep_;
public:
    zero_default(rep i = 0) : rep_(i) {}
    operator rep() const {return rep_;}

    zero_default& operator+=(zero_default x) {rep_ += x.rep_; return *this;}
    zero_default& operator-=(zero_default x) {rep_ -= x.rep_; return *this;}
    zero_default& operator*=(zero_default x) {rep_ *= x.rep_; return *this;}
    zero_default& operator/=(zero_default x) {rep_ /= x.rep_; return *this;}

    zero_default  operator+ () const {return *this;}
    zero_default  operator- () const {return zero_default(-rep_);}
    zero_default& operator++()       {++rep_; return *this;}
    zero_default  operator++(int)    {return zero_default(rep_++);}
    zero_default& operator--()       {--rep_; return *this;}
    zero_default  operator--(int)    {return zero_default(rep_--);}

    friend zero_default operator+(zero_default x, zero_default y) {return x += y;}
    friend zero_default operator-(zero_default x, zero_default y) {return x -= y;}
    friend zero_default operator*(zero_default x, zero_default y) {return x *= y;}
    friend zero_default operator/(zero_default x, zero_default y) {return x /= y;}

    friend bool operator==(zero_default x, zero_default y) {return x.rep_ == y.rep_;}
    friend bool operator!=(zero_default x, zero_default y) {return !(x == y);}
    friend bool operator< (zero_default x, zero_default y) {return x.rep_ < y.rep_;}
    friend bool operator<=(zero_default x, zero_default y) {return !(y < x);}
    friend bool operator> (zero_default x, zero_default y) {return y < x;}
    friend bool operator>=(zero_default x, zero_default y) {return !(x < y);}
};

typedef boost::chrono::duration<zero_default<long long>, boost::nano        > nanoseconds;
typedef boost::chrono::duration<zero_default<long long>, boost::micro       > microseconds;
typedef boost::chrono::duration<zero_default<long long>, boost::milli       > milliseconds;
typedef boost::chrono::duration<zero_default<long long>                   > seconds;
typedef boost::chrono::duration<zero_default<long long>, boost::ratio<60>   > minutes;
typedef boost::chrono::duration<zero_default<long long>, boost::ratio<3600> > hours;

void test()
{
    milliseconds ms;
    cout << ms.count() << '\n';
}

}  // I_dont_like_the_default_duration_behavior

// Build a min for two time_points

template <class Rep, class Period>
void
print_duration(ostream& os, duration<Rep, Period> d)
{
    os << d.count() << " * " << Period::num << '/' << Period::den << " seconds\n";
}

// Example min utility:  returns the earliest time_point
//   Being able to *easily* write this function is a major feature!
template <class Clock, class Duration1, class Duration2>
inline
typename boost::common_type<time_point<Clock, Duration1>,
                     time_point<Clock, Duration2> >::type
min BOOST_PREVENT_MACRO_SUBSTITUTION (time_point<Clock, Duration1> t1, time_point<Clock, Duration2> t2)
{
    return t2 < t1 ? t2 : t1;
}

void test_min()
{
    typedef time_point<system_clock,
      boost::common_type<system_clock::duration, seconds>::type> T1;
    typedef time_point<system_clock,
      boost::common_type<system_clock::duration, nanoseconds>::type> T2;
    typedef boost::common_type<T1, T2>::type T3;
    /*auto*/ T1 t1 = system_clock::now() + seconds(3);
    /*auto*/ T2 t2 = system_clock::now() + nanoseconds(3);
    /*auto*/ T3 t3 = (min)(t1, t2);
    print_duration(cout, t1 - t3);
    print_duration(cout, t2 - t3);
}

void explore_limits()
{
    typedef duration<long long, boost::ratio_multiply<boost::ratio<24*3652425,10000>,
      hours::period>::type> Years;
    steady_clock::time_point t1( Years(250));
    steady_clock::time_point t2(-Years(250));
    // nanosecond resolution is likely to overflow.  "up cast" to microseconds.
    //   The "up cast" trades precision for range.
    microseconds d = time_point_cast<microseconds>(t1) - time_point_cast<microseconds>(t2);
    cout << d.count() << " microseconds\n";
}

void manipulate_clock_object(system_clock clock)
{
    system_clock::duration delay = milliseconds(5);
    system_clock::time_point start = clock.now();
    while (clock.now() - start <= delay)
      ;
    system_clock::time_point stop = clock.now();
    system_clock::duration elapsed = stop - start;
    cout << "paused " << nanoseconds(elapsed).count() << " nanoseconds\n";
};

template <long long speed>
struct cycle_count
{
    typedef typename boost::ratio_multiply<boost::ratio<speed>, boost::mega>::type frequency;  // Mhz
    typedef typename boost::ratio_divide<boost::ratio<1>, frequency>::type period;
    typedef long long rep;
    typedef boost::chrono::duration<rep, period> duration;
    typedef boost::chrono::time_point<cycle_count> time_point;

    static time_point now()
    {
        static long long tick = 0;
        // return exact cycle count
        return time_point(duration(++tick));  // fake access to clock cycle count
    }
};

template <long long speed>
struct approx_cycle_count
{
    static const long long frequency = speed * 1000000;  // MHz
    typedef nanoseconds duration;
    typedef duration::rep rep;
    typedef duration::period period;
    static const long long nanosec_per_sec = period::den;
    typedef boost::chrono::time_point<approx_cycle_count> time_point;

    static time_point now()
    {
        static long long tick = 0;
        // return cycle count as an approximate number of nanoseconds
        // compute as if nanoseconds is only duration in the std::lib
        return time_point(duration(++tick * nanosec_per_sec / frequency));
    }
};

void cycle_count_delay()
{
    {
    typedef cycle_count<400> clock;
    cout << "\nSimulated " << clock::frequency::num / boost::mega::num << "MHz clock which has a tick period of "
         << duration<double, boost::nano>(clock::duration(1)).count() << " nanoseconds\n";
    nanoseconds delayns(500);
    clock::duration delay = duration_cast<clock::duration>(delayns);
    cout << "delay = " << delayns.count() << " nanoseconds which is " << delay.count() << " cycles\n";
    clock::time_point start = clock::now();
    clock::time_point stop = start + delay;
    while (clock::now() < stop)  // no multiplies or divides in this loop
        ;
    clock::time_point end = clock::now();
    clock::duration elapsed = end - start;
    cout << "paused " << elapsed.count() << " cycles ";
    cout << "which is " << duration_cast<nanoseconds>(elapsed).count() << " nanoseconds\n";
    }
    {
    typedef approx_cycle_count<400> clock;
    cout << "\nSimulated " << clock::frequency / 1000000 << "MHz clock modeled with nanoseconds\n";
    clock::duration delay = nanoseconds(500);
    cout << "delay = " << delay.count() << " nanoseconds\n";
    clock::time_point start = clock::now();
    clock::time_point stop = start + delay;
    while (clock::now() < stop) // 1 multiplication and 1 division in this loop
        ;
    clock::time_point end = clock::now();
    clock::duration elapsed = end - start;
    cout << "paused " << elapsed.count() << " nanoseconds\n";
    }
    {
    typedef cycle_count<1500> clock;
    cout << "\nSimulated " << clock::frequency::num / boost::mega::num << "MHz clock which has a tick period of "
         << duration<double, boost::nano>(clock::duration(1)).count() << " nanoseconds\n";
    nanoseconds delayns(500);
    clock::duration delay = duration_cast<clock::duration>(delayns);
    cout << "delay = " << delayns.count() << " nanoseconds which is " << delay.count() << " cycles\n";
    clock::time_point start = clock::now();
    clock::time_point stop = start + delay;
    while (clock::now() < stop)  // no multiplies or divides in this loop
        ;
    clock::time_point end = clock::now();
    clock::duration elapsed = end - start;
    cout << "paused " << elapsed.count() << " cycles ";
    cout << "which is " << duration_cast<nanoseconds>(elapsed).count() << " nanoseconds\n";
    }
    {
    typedef approx_cycle_count<1500> clock;
    cout << "\nSimulated " << clock::frequency / 1000000 << "MHz clock modeled with nanoseconds\n";
    clock::duration delay = nanoseconds(500);
    cout << "delay = " << delay.count() << " nanoseconds\n";
    clock::time_point start = clock::now();
    clock::time_point stop = start + delay;
    while (clock::now() < stop) // 1 multiplication and 1 division in this loop
        ;
    clock::time_point end = clock::now();
    clock::duration elapsed = end - start;
    cout << "paused " << elapsed.count() << " nanoseconds\n";
    }
}

void test_special_values()
{
    std::cout << "duration<unsigned>::min().count()  = " << (duration<unsigned>::min)().count() << '\n';
    std::cout << "duration<unsigned>::zero().count() = " << duration<unsigned>::zero().count() << '\n';
    std::cout << "duration<unsigned>::max().count()  = " << (duration<unsigned>::max)().count() << '\n';
    std::cout << "duration<int>::min().count()       = " << (duration<int>::min)().count() << '\n';
    std::cout << "duration<int>::zero().count()      = " << duration<int>::zero().count() << '\n';
    std::cout << "duration<int>::max().count()       = " << (duration<int>::max)().count() << '\n';
}

int main()
{
    basic_examples();
    testStdUser();
    testUser1();
    testUser2();
    drive_physics_function();
    test_range();
    test_extended_range();
    inspect_all();
    test_milliseconds();
    test_with_xtime();
    test_system_clock();
    test_steady_clock();
    test_hi_resolution_clock();
    //test_mixed_clock();
    timeval_demo::test_xtime_clock();
    runtime_resolution::test();
    //test_c_mapping();
    test_duration_division();
    I_dont_like_the_default_duration_behavior::test();
    test_min();
    inspect_duration(common_type<duration<double>, hours, microseconds>::type(),
                    "common_type<duration<double>, hours, microseconds>::type");
    explore_limits();
    manipulate_clock_object(system_clock());
    duration<double, boost::milli> d = milliseconds(3) * 2.5;
    inspect_duration(milliseconds(3) * 2.5, "milliseconds(3) * 2.5");
    cout << d.count() << '\n';
//    milliseconds ms(3.5);  // doesn't compile
    cout << "milliseconds ms(3.5) doesn't compile\n";
    cycle_count_delay();
    test_special_values();
    return 0;
}