1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#define BOOST_TEST_MODULE TestCommandQueue
#include <boost/test/unit_test.hpp>
#include <iostream>
#include <boost/compute/kernel.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/program.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/algorithm/fill.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/utility/dim.hpp>
#include <boost/compute/utility/source.hpp>
#include <boost/compute/detail/diagnostic.hpp>
#include "check_macros.hpp"
#include "context_setup.hpp"
namespace bc = boost::compute;
namespace compute = boost::compute;
BOOST_AUTO_TEST_CASE(get_context)
{
BOOST_VERIFY(queue.get_context() == context);
BOOST_VERIFY(queue.get_info<CL_QUEUE_CONTEXT>() == context.get());
}
BOOST_AUTO_TEST_CASE(get_device)
{
BOOST_VERIFY(queue.get_info<CL_QUEUE_DEVICE>() == device.get());
}
BOOST_AUTO_TEST_CASE(equality_operator)
{
compute::command_queue queue1(context, device);
BOOST_CHECK(queue1 == queue1);
compute::command_queue queue2 = queue1;
BOOST_CHECK(queue1 == queue2);
compute::command_queue queue3(context, device);
BOOST_CHECK(queue1 != queue3);
}
BOOST_AUTO_TEST_CASE(event_profiling)
{
bc::command_queue queue(context, device, bc::command_queue::enable_profiling);
int data[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
bc::buffer buffer(context, sizeof(data));
bc::event event =
queue.enqueue_write_buffer_async(buffer,
0,
sizeof(data),
static_cast<const void *>(data));
queue.finish();
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_queued);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_submit);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_start);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_end);
}
BOOST_AUTO_TEST_CASE(kernel_profiling)
{
// create queue with profiling enabled
boost::compute::command_queue queue(
context, device, boost::compute::command_queue::enable_profiling
);
// input data
int data[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
boost::compute::buffer buffer(context, sizeof(data));
// copy input data to device
queue.enqueue_write_buffer(buffer, 0, sizeof(data), data);
// setup kernel
const char source[] =
"__kernel void iscal(__global int *buffer, int alpha)\n"
"{\n"
" buffer[get_global_id(0)] *= alpha;\n"
"}\n";
boost::compute::program program =
boost::compute::program::create_with_source(source, context);
program.build();
boost::compute::kernel kernel(program, "iscal");
kernel.set_arg(0, buffer);
kernel.set_arg(1, 2);
// execute kernel
size_t global_work_offset = 0;
size_t global_work_size = 8;
boost::compute::event event =
queue.enqueue_nd_range_kernel(kernel,
size_t(1),
&global_work_offset,
&global_work_size,
0);
// wait until kernel is finished
event.wait();
// check profiling information
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_queued);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_submit);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_start);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_end);
// read results back to host
queue.enqueue_read_buffer(buffer, 0, sizeof(data), data);
// check results
BOOST_CHECK_EQUAL(data[0], 2);
BOOST_CHECK_EQUAL(data[1], 4);
BOOST_CHECK_EQUAL(data[2], 6);
BOOST_CHECK_EQUAL(data[3], 8);
BOOST_CHECK_EQUAL(data[4], 10);
BOOST_CHECK_EQUAL(data[5], 12);
BOOST_CHECK_EQUAL(data[6], 14);
BOOST_CHECK_EQUAL(data[7], 16);
}
BOOST_AUTO_TEST_CASE(construct_from_cl_command_queue)
{
// create cl_command_queue
cl_command_queue cl_queue;
#ifdef BOOST_COMPUTE_CL_VERSION_2_0
if (device.check_version(2, 0)){ // runtime check
cl_queue =
clCreateCommandQueueWithProperties(context, device.id(), 0, 0);
} else
#endif // BOOST_COMPUTE_CL_VERSION_2_0
{
// Suppress deprecated declarations warning
BOOST_COMPUTE_DISABLE_DEPRECATED_DECLARATIONS();
cl_queue =
clCreateCommandQueue(context, device.id(), 0, 0);
BOOST_COMPUTE_ENABLE_DEPRECATED_DECLARATIONS();
}
BOOST_VERIFY(cl_queue);
// create boost::compute::command_queue
boost::compute::command_queue queue(cl_queue);
// check queue
BOOST_CHECK(queue.get_context() == context);
BOOST_CHECK(cl_command_queue(queue) == cl_queue);
// cleanup cl_command_queue
clReleaseCommandQueue(cl_queue);
}
#ifdef BOOST_COMPUTE_CL_VERSION_1_1
BOOST_AUTO_TEST_CASE(write_buffer_rect)
{
REQUIRES_OPENCL_VERSION(1, 1);
// skip this test on AMD GPUs due to a buggy implementation
// of the clEnqueueWriteBufferRect() function
if(device.vendor() == "Advanced Micro Devices, Inc." &&
device.type() & boost::compute::device::gpu){
std::cerr << "skipping write_buffer_rect test on AMD GPU" << std::endl;
return;
}
int data[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
boost::compute::buffer buffer(context, 8 * sizeof(int));
// copy every other value to the buffer
size_t buffer_origin[] = { 0, 0, 0 };
size_t host_origin[] = { 0, 0, 0 };
size_t region[] = { sizeof(int), sizeof(int), 1 };
queue.enqueue_write_buffer_rect(
buffer,
buffer_origin,
host_origin,
region,
sizeof(int),
0,
2 * sizeof(int),
0,
data
);
// check output values
int output[4];
queue.enqueue_read_buffer(buffer, 0, 4 * sizeof(int), output);
BOOST_CHECK_EQUAL(output[0], 1);
BOOST_CHECK_EQUAL(output[1], 3);
BOOST_CHECK_EQUAL(output[2], 5);
BOOST_CHECK_EQUAL(output[3], 7);
}
#endif // BOOST_COMPUTE_CL_VERSION_1_1
static bool nullary_kernel_executed = false;
static void nullary_kernel()
{
nullary_kernel_executed = true;
}
BOOST_AUTO_TEST_CASE(native_kernel)
{
cl_device_exec_capabilities exec_capabilities =
device.get_info<CL_DEVICE_EXECUTION_CAPABILITIES>();
if(!(exec_capabilities & CL_EXEC_NATIVE_KERNEL)){
std::cerr << "skipping native_kernel test: "
<< "device does not support CL_EXEC_NATIVE_KERNEL"
<< std::endl;
return;
}
compute::vector<int> vector(1000, context);
compute::fill(vector.begin(), vector.end(), 42, queue);
BOOST_CHECK_EQUAL(nullary_kernel_executed, false);
queue.enqueue_native_kernel(&nullary_kernel);
queue.finish();
BOOST_CHECK_EQUAL(nullary_kernel_executed, true);
}
BOOST_AUTO_TEST_CASE(copy_with_wait_list)
{
int data1[] = { 1, 3, 5, 7 };
int data2[] = { 2, 4, 6, 8 };
compute::buffer buf1(context, 4 * sizeof(int));
compute::buffer buf2(context, 4 * sizeof(int));
compute::event write_event1 =
queue.enqueue_write_buffer_async(buf1, 0, buf1.size(), data1);
compute::event write_event2 =
queue.enqueue_write_buffer_async(buf2, 0, buf2.size(), data2);
compute::event read_event1 =
queue.enqueue_read_buffer_async(buf1, 0, buf1.size(), data2, write_event1);
compute::event read_event2 =
queue.enqueue_read_buffer_async(buf2, 0, buf2.size(), data1, write_event2);
read_event1.wait();
read_event2.wait();
CHECK_HOST_RANGE_EQUAL(int, 4, data1, (2, 4, 6, 8));
CHECK_HOST_RANGE_EQUAL(int, 4, data2, (1, 3, 5, 7));
}
#ifndef BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST
BOOST_AUTO_TEST_CASE(enqueue_kernel_with_extents)
{
using boost::compute::dim;
using boost::compute::uint_;
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void foo(__global int *output1, __global int *output2)
{
output1[get_global_id(0)] = get_local_id(0);
output2[get_global_id(1)] = get_local_id(1);
}
);
compute::kernel kernel =
compute::kernel::create_with_source(source, "foo", context);
compute::vector<uint_> output1(4, context);
compute::vector<uint_> output2(4, context);
kernel.set_arg(0, output1);
kernel.set_arg(1, output2);
queue.enqueue_nd_range_kernel(kernel, dim(0, 0), dim(4, 4), dim(1, 1));
CHECK_RANGE_EQUAL(int, 4, output1, (0, 0, 0, 0));
CHECK_RANGE_EQUAL(int, 4, output2, (0, 0, 0, 0));
// Maximum number of work-items that can be specified in each
// dimension of the work-group to clEnqueueNDRangeKernel.
std::vector<size_t> max_work_item_sizes =
device.get_info<CL_DEVICE_MAX_WORK_ITEM_SIZES>();
if(max_work_item_sizes[0] < size_t(2)) {
return;
}
queue.enqueue_nd_range_kernel(kernel, dim(0, 0), dim(4, 4), dim(2, 1));
CHECK_RANGE_EQUAL(int, 4, output1, (0, 1, 0, 1));
CHECK_RANGE_EQUAL(int, 4, output2, (0, 0, 0, 0));
if(max_work_item_sizes[1] < size_t(2)) {
return;
}
queue.enqueue_nd_range_kernel(kernel, dim(0, 0), dim(4, 4), dim(2, 2));
CHECK_RANGE_EQUAL(int, 4, output1, (0, 1, 0, 1));
CHECK_RANGE_EQUAL(int, 4, output2, (0, 1, 0, 1));
}
#endif // BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST
#ifdef BOOST_COMPUTE_CL_VERSION_2_1
BOOST_AUTO_TEST_CASE(get_default_device_queue)
{
REQUIRES_OPENCL_VERSION(2, 1);
boost::compute::command_queue default_device_queue(
context, device,
boost::compute::command_queue::on_device |
boost::compute::command_queue::on_device_default |
boost::compute::command_queue::enable_out_of_order_execution
);
BOOST_CHECK_NO_THROW(queue.get_info<CL_QUEUE_DEVICE_DEFAULT>());
BOOST_CHECK_EQUAL(
queue.get_default_device_queue(),
default_device_queue
);
}
BOOST_AUTO_TEST_CASE(set_as_default_device_queue)
{
REQUIRES_OPENCL_VERSION(2, 1);
boost::compute::command_queue new_default_device_queue(
context, device,
boost::compute::command_queue::on_device |
boost::compute::command_queue::enable_out_of_order_execution
);
new_default_device_queue.set_as_default_device_queue();
BOOST_CHECK_EQUAL(
queue.get_default_device_queue(),
new_default_device_queue
);
}
#endif
BOOST_AUTO_TEST_SUITE_END()
|