1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2012 Mateusz Loskot, London, UK.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// Point Example - showing different type of points
#include <iostream>
#include <boost/geometry/geometry.hpp>
#include <boost/geometry/geometries/point_xy.hpp>
#include <boost/geometry/geometries/adapted/boost_tuple.hpp>
#include <boost/geometry/geometries/adapted/c_array.hpp>
#include <boost/geometry/geometries/adapted/boost_array.hpp>
#include <boost/geometry/geometries/adapted/boost_polygon/point.hpp>
BOOST_GEOMETRY_REGISTER_C_ARRAY_CS(cs::cartesian)
BOOST_GEOMETRY_REGISTER_BOOST_ARRAY_CS(cs::cartesian)
BOOST_GEOMETRY_REGISTER_BOOST_TUPLE_CS(cs::cartesian)
int main()
{
using namespace boost::geometry;
// Boost.Geometry contains several point types:
// 1: its own generic type
model::point<double, 2, cs::cartesian> pt1;
// 2: its own type targetted to Cartesian (x,y) coordinates
model::d2::point_xy<double> pt2;
// 3: it supports Boost tuple's
boost::tuple<double, double> pt3;
// 4: it supports normal arrays
double pt4[2];
// 5: it supports arrays-as-points from Boost.Array
boost::array<double, 2> pt5;
// 6: it supports points from Boost.Polygon
boost::polygon::point_data<double> pt6;
// 7: in the past there was a typedef point_2d
// But users are now supposted to do that themselves:
typedef model::d2::point_xy<double> point_2d;
point_2d pt7;
// 7: there are more variants, and you can create your own.
// (see therefore the custom_point example)
// All these types are handled the same way. We show here
// assigning them and calculating distances.
assign_values(pt1, 1, 1);
assign_values(pt2, 2, 2);
assign_values(pt3, 3, 3);
assign_values(pt4, 4, 4);
assign_values(pt5, 5, 5);
assign_values(pt6, 6, 6);
assign_values(pt7, 7, 7);
double d1 = distance(pt1, pt2);
double d2 = distance(pt3, pt4);
double d3 = distance(pt5, pt6);
std::cout << "Distances: "
<< d1 << " and " << d2 << " and " << d3 << std::endl;
// (in case you didn't note, distances can be calculated
// from points with different point-types)
// Several ways of construction and setting point values
// 1: default, empty constructor, causing no initialization at all
model::d2::point_xy<double> p1;
// 2: as shown above, assign_values
model::d2::point_xy<double> p2;
assign_values(p2, 1, 1);
// 3: using "set" function
// set uses the concepts behind, such that it can be applied for
// every point-type (like assign_values)
model::d2::point_xy<double> p3;
set<0>(p3, 1);
set<1>(p3, 1);
// set<2>(p3, 1); //will result in compile-error
// 3: for any point type, and other geometry objects:
// there is the "make" object generator
// (this one requires to specify the point-type).
model::d2::point_xy<double> p4 = make<model::d2::point_xy<double> >(1,1);
// 5: for the d2::point_xy<...> type only: constructor with two values
model::d2::point_xy<double> p5(1,1);
// 6: for boost tuples you can of course use make_tuple
// Some ways of getting point values
// 1: using the "get" function following the concepts behind
std::cout << get<0>(p2) << "," << get<1>(p2) << std::endl;
// 2: for point_xy only
std::cout << p2.x() << "," << p2.y() << std::endl;
// 3: using boost-tuples you of course can boost-tuple-methods
std::cout << pt3.get<0>() << "," << pt3.get<1>() << std::endl;
// 4: Boost.Geometry supports various output formats, e.g. DSV
// (delimiter separated values)
std::cout << dsv(pt3) << std::endl;
// 5. or wkt
std::cout << wkt(p4) << (equals(p4, p5) ? " equals " : " don't equals ") << wkt(p5) << std::endl;
// There are 3-dimensional points too
model::point<double, 3, cs::cartesian> d3a, d3b;
assign_values(d3a, 1, 2, 3);
assign_values(d3b, 4, 5, 6);
d3 = distance(d3a, d3b);
// Other examples show other types of points, geometries and more algorithms
return 0;
}
|