1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
//
// Copyright 2019 Olzhas Zhumabek <anonymous.from.applecity@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#include <boost/gil/image.hpp>
#include <boost/gil/image_view.hpp>
#include <boost/gil/image_processing/numeric.hpp>
#include <boost/gil/image_processing/hessian.hpp>
#include <boost/gil/extension/io/png.hpp>
#include <vector>
#include <functional>
#include <set>
#include <iostream>
#include <fstream>
namespace gil = boost::gil;
// Demonstrates Hessian feature (blob) detection
// some images might produce artifacts
// when converted to grayscale,
// which was previously observed on
// canny edge detector for test input
// used for this example.
// the algorithm here follows sRGB gamma definition
// taken from here (luminance calculation):
// https://en.wikipedia.org/wiki/Grayscale
gil::gray8_image_t to_grayscale(gil::rgb8_view_t original)
{
gil::gray8_image_t output_image(original.dimensions());
auto output = gil::view(output_image);
constexpr double max_channel_intensity = (std::numeric_limits<std::uint8_t>::max)();
for (long int y = 0; y < original.height(); ++y)
{
for (long int x = 0; x < original.width(); ++x)
{
// scale the values into range [0, 1] and calculate linear intensity
auto& p = original(x, y);
double red_intensity = p.at(std::integral_constant<int, 0>{})
/ max_channel_intensity;
double green_intensity = p.at(std::integral_constant<int, 1>{})
/ max_channel_intensity;
double blue_intensity = p.at(std::integral_constant<int, 2>{})
/ max_channel_intensity;
auto linear_luminosity = 0.2126 * red_intensity
+ 0.7152 * green_intensity
+ 0.0722 * blue_intensity;
// perform gamma adjustment
double gamma_compressed_luminosity = 0;
if (linear_luminosity < 0.0031308)
{
gamma_compressed_luminosity = linear_luminosity * 12.92;
} else
{
gamma_compressed_luminosity = 1.055 * std::pow(linear_luminosity, 1 / 2.4) - 0.055;
}
// since now it is scaled, descale it back
output(x, y) = gamma_compressed_luminosity * max_channel_intensity;
}
}
return output_image;
}
void apply_gaussian_blur(gil::gray8_view_t input_view, gil::gray8_view_t output_view)
{
constexpr static std::ptrdiff_t filter_height = 5ull;
constexpr static std::ptrdiff_t filter_width = 5ull;
constexpr static double filter[filter_height][filter_width] =
{
{ 2, 4, 6, 4, 2 },
{ 4, 9, 12, 9, 4 },
{ 5, 12, 15, 12, 5 },
{ 4, 9, 12, 9, 4 },
{ 2, 4, 5, 4, 2 }
};
constexpr double factor = 1.0 / 159;
constexpr double bias = 0.0;
const auto height = input_view.height();
const auto width = input_view.width();
for (std::ptrdiff_t x = 0; x < width; ++x)
{
for (std::ptrdiff_t y = 0; y < height; ++y)
{
double intensity = 0.0;
for (std::ptrdiff_t filter_y = 0; filter_y < filter_height; ++filter_y)
{
for (std::ptrdiff_t filter_x = 0; filter_x < filter_width; ++filter_x)
{
int image_x = x - filter_width / 2 + filter_x;
int image_y = y - filter_height / 2 + filter_y;
if (image_x >= input_view.width() || image_x < 0 ||
image_y >= input_view.height() || image_y < 0)
{
continue;
}
const auto& pixel = input_view(image_x, image_y);
intensity += pixel.at(std::integral_constant<int, 0>{})
* filter[filter_y][filter_x];
}
}
auto& pixel = output_view(gil::point_t(x, y));
pixel = (std::min)((std::max)(int(factor * intensity + bias), 0), 255);
}
}
}
std::vector<gil::point_t> suppress(
gil::gray32f_view_t harris_response,
double harris_response_threshold)
{
std::vector<gil::point_t> corner_points;
for (gil::gray32f_view_t::coord_t y = 1; y < harris_response.height() - 1; ++y)
{
for (gil::gray32f_view_t::coord_t x = 1; x < harris_response.width() - 1; ++x)
{
auto value = [](gil::gray32f_pixel_t pixel) {
return pixel.at(std::integral_constant<int, 0>{});
};
double values[9] = {
value(harris_response(x - 1, y - 1)),
value(harris_response(x, y - 1)),
value(harris_response(x + 1, y - 1)),
value(harris_response(x - 1, y)),
value(harris_response(x, y)),
value(harris_response(x + 1, y)),
value(harris_response(x - 1, y + 1)),
value(harris_response(x, y + 1)),
value(harris_response(x + 1, y + 1))
};
auto maxima = *std::max_element(
values,
values + 9,
[](double lhs, double rhs)
{
return lhs < rhs;
}
);
if (maxima == value(harris_response(x, y))
&& std::count(values, values + 9, maxima) == 1
&& maxima >= harris_response_threshold)
{
corner_points.emplace_back(x, y);
}
}
}
return corner_points;
}
int main(int argc, char* argv[]) {
if (argc != 5)
{
std::cout << "usage: " << argv[0] << " <input.png> <odd-window-size>"
" <hessian-response-threshold> <output.png>\n";
return -1;
}
std::size_t window_size = std::stoul(argv[2]);
long hessian_determinant_threshold = std::stol(argv[3]);
gil::rgb8_image_t input_image;
gil::read_image(argv[1], input_image, gil::png_tag{});
auto input_view = gil::view(input_image);
auto grayscaled = to_grayscale(input_view);
gil::gray8_image_t smoothed_image(grayscaled.dimensions());
auto smoothed = gil::view(smoothed_image);
apply_gaussian_blur(gil::view(grayscaled), smoothed);
gil::gray16s_image_t x_gradient_image(grayscaled.dimensions());
gil::gray16s_image_t y_gradient_image(grayscaled.dimensions());
auto x_gradient = gil::view(x_gradient_image);
auto y_gradient = gil::view(y_gradient_image);
auto scharr_x = gil::generate_dx_scharr();
gil::detail::convolve_2d(smoothed, scharr_x, x_gradient);
auto scharr_y = gil::generate_dy_scharr();
gil::detail::convolve_2d(smoothed, scharr_y, y_gradient);
gil::gray32f_image_t m11(x_gradient.dimensions());
gil::gray32f_image_t m12_21(x_gradient.dimensions());
gil::gray32f_image_t m22(x_gradient.dimensions());
gil::compute_hessian_entries(
x_gradient,
y_gradient,
gil::view(m11),
gil::view(m12_21),
gil::view(m22)
);
gil::gray32f_image_t hessian_response(x_gradient.dimensions());
auto gaussian_kernel = gil::generate_gaussian_kernel(window_size, 0.84089642);
gil::compute_hessian_responses(
gil::view(m11),
gil::view(m12_21),
gil::view(m22),
gaussian_kernel,
gil::view(hessian_response)
);
auto corner_points = suppress(gil::view(hessian_response), hessian_determinant_threshold);
for (auto point: corner_points) {
input_view(point) = gil::rgb8_pixel_t(0, 0, 0);
input_view(point).at(std::integral_constant<int, 1>{}) = 255;
}
gil::write_view(argv[4], input_view, gil::png_tag{});
}
|