1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
// Copyright 2015-2018 Hans Dembinski
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/core/lightweight_test.hpp>
#include <boost/histogram/accumulators/fraction.hpp>
#include <boost/histogram/accumulators/ostream.hpp>
#include <boost/histogram/utility/wilson_interval.hpp>
#include <cmath>
#include <limits>
#include "is_close.hpp"
#include "str.hpp"
#include "throw_exception.hpp"
using namespace boost::histogram;
using namespace std::literals;
template <class T>
void run_tests() {
using f_t = accumulators::fraction<T>;
const double eps = std::numeric_limits<typename f_t::real_type>::epsilon();
{
f_t f;
BOOST_TEST_EQ(f.successes(), static_cast<T>(0));
BOOST_TEST_EQ(f.failures(), static_cast<T>(0));
BOOST_TEST(std::isnan(f.value()));
BOOST_TEST(std::isnan(f.variance()));
const auto ci = f.confidence_interval();
BOOST_TEST(std::isnan(ci.first));
BOOST_TEST(std::isnan(ci.second));
}
{
f_t f;
f(true);
BOOST_TEST_EQ(f.successes(), static_cast<T>(1));
BOOST_TEST_EQ(f.failures(), static_cast<T>(0));
BOOST_TEST_EQ(str(f), "fraction(1, 0)"s);
f(false);
BOOST_TEST_EQ(f.successes(), static_cast<T>(1));
BOOST_TEST_EQ(f.failures(), static_cast<T>(1));
BOOST_TEST_EQ(str(f), "fraction(1, 1)"s);
BOOST_TEST_EQ(str(f, 20), "fraction(1, 1) "s);
}
{
f_t f(3, 1);
BOOST_TEST_EQ(f.successes(), static_cast<T>(3));
BOOST_TEST_EQ(f.failures(), static_cast<T>(1));
BOOST_TEST_EQ(f.value(), 0.75f);
BOOST_TEST_IS_CLOSE(f.variance(), 0.75f * (1.0f - 0.75f) / 4.f, eps);
const auto ci = f.confidence_interval();
const auto expected = utility::wilson_interval<double>()(3, 1);
BOOST_TEST_IS_CLOSE(ci.first, expected.first, eps);
BOOST_TEST_IS_CLOSE(ci.second, expected.second, eps);
}
{
f_t f(0, 1);
BOOST_TEST_EQ(f.successes(), static_cast<T>(0));
BOOST_TEST_EQ(f.failures(), static_cast<T>(1));
BOOST_TEST_EQ(f.value(), 0.f);
BOOST_TEST_EQ(f.variance(), 0.f);
const auto ci = f.confidence_interval();
const auto expected = utility::wilson_interval<double>()(0, 1);
BOOST_TEST_IS_CLOSE(ci.first, expected.first, eps);
BOOST_TEST_IS_CLOSE(ci.second, expected.second, eps);
}
{
f_t f(1, 0);
BOOST_TEST_EQ(f.successes(), static_cast<T>(1));
BOOST_TEST_EQ(f.failures(), static_cast<T>(0));
BOOST_TEST_EQ(f.value(), 1.f);
BOOST_TEST_EQ(f.variance(), 0.f);
const auto ci = f.confidence_interval();
const auto expected = utility::wilson_interval<double>()(1, 0);
BOOST_TEST_IS_CLOSE(ci.first, expected.first, eps);
BOOST_TEST_IS_CLOSE(ci.second, expected.second, eps);
}
{
f_t a(1, 0), b(0, 1);
a += b;
BOOST_TEST_EQ(a, f_t(1, 1));
}
}
int main() {
run_tests<int>();
run_tests<double>();
run_tests<float>();
{
using f_t1 = accumulators::fraction<double>;
using f_t2 = accumulators::fraction<int>;
f_t1 f1(5, 3);
f_t2 f2(f1);
BOOST_TEST_EQ(f2.successes(), 5);
BOOST_TEST_EQ(f2.failures(), 3);
}
return boost::report_errors();
}
|