1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
// Copyright 2018-2024 Emil Dotchevski and Reverge Studios, Inc.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// This is the program presented in
// https://boostorg.github.io/leaf/#introduction-result.
// It reads a text file in a buffer and prints it to std::cout, using LEAF to
// handle errors. This version does not use exception handling. The version that
// does use exception handling is in print_file_exceptions.cpp.
#include <boost/leaf.hpp>
#include <boost/system/result.hpp>
#include <iostream>
#include <memory>
#include <stdio.h>
namespace leaf = boost::leaf;
// First, we need an enum to define our error codes:
enum error_code
{
bad_command_line = 1,
open_error,
read_error,
size_error,
eof_error,
output_error
};
template <class T>
using result = boost::system::result<T, std::error_code>;
// To enable LEAF to work with boost::system::result, we need to specialize the
// is_result_type template:
namespace boost { namespace leaf {
template <class T> struct is_result_type<boost::system::result<T, std::error_code>>: std::true_type { };
} }
// We will handle all failures in our main function, but first, here are the
// declarations of the functions it calls, each communicating failures using
// result<T>:
// Parse the command line, return the file name.
result<char const *> parse_command_line( int argc, char const * argv[] );
// Open a file for reading.
result<std::shared_ptr<FILE>> file_open( char const * file_name );
// Return the size of the file.
result<std::size_t> file_size( FILE & f );
// Read size bytes from f into buf.
result<void> file_read( FILE & f, void * buf, std::size_t size );
// The main function, which handles all errors.
int main( int argc, char const * argv[] )
{
return leaf::try_handle_all(
[&]() -> result<int>
{
BOOST_LEAF_AUTO(file_name, parse_command_line(argc,argv));
auto load = leaf::on_error( leaf::e_file_name{file_name} );
BOOST_LEAF_AUTO(f, file_open(file_name));
BOOST_LEAF_AUTO(s, file_size(*f));
std::string buffer(1 + s, '\0');
BOOST_LEAF_CHECK(file_read(*f, &buffer[0], buffer.size()-1));
std::cout << buffer;
std::cout.flush();
if( std::cout.fail() )
return leaf::new_error(output_error, leaf::e_errno{errno});
return 0;
},
// Each of the lambdas below is an error handler. LEAF will consider
// them, in order, and call the first one that matches the available
// error objects.
// This handler will be called if the error includes:
// - an object of type error_code equal to open_error, and
// - an object of type leaf::e_errno that has .value equal to ENOENT,
// and
// - an object of type leaf::e_file_name.
[]( leaf::match<error_code, open_error>, leaf::match_value<leaf::e_errno, ENOENT>, leaf::e_file_name const & fn )
{
std::cerr << "File not found: " << fn.value << std::endl;
return 1;
},
// This handler will be called if the error includes:
// - an object of type error_code equal to open_error, and
// - an object of type leaf::e_errno (regardless of its .value), and
// - an object of type leaf::e_file_name.
[]( leaf::match<error_code, open_error>, leaf::e_errno const & errn, leaf::e_file_name const & fn )
{
std::cerr << "Failed to open " << fn.value << ", errno=" << errn << std::endl;
return 2;
},
// This handler will be called if the error includes:
// - an object of type error_code equal to any of size_error,
// read_error, eof_error, and
// - an optional object of type leaf::e_errno (regardless of its
// .value), and
// - an object of type leaf::e_file_name.
[]( leaf::match<error_code, size_error, read_error, eof_error>, leaf::e_errno const * errn, leaf::e_file_name const & fn )
{
std::cerr << "Failed to access " << fn.value;
if( errn )
std::cerr << ", errno=" << *errn;
std::cerr << std::endl;
return 3;
},
// This handler will be called if the error includes:
// - an object of type error_code equal to output_error, and
// - an object of type leaf::e_errno (regardless of its .value),
[]( leaf::match<error_code, output_error>, leaf::e_errno const & errn )
{
std::cerr << "Output error, errno=" << errn << std::endl;
return 4;
},
// This handler will be called if we've got a bad_command_line
[]( leaf::match<error_code, bad_command_line> )
{
std::cout << "Bad command line argument" << std::endl;
return 5;
},
// This last handler matches any error: it prints diagnostic information
// to help debug logic errors in the program, since it failed to match
// an appropriate error handler to the error condition it encountered.
// In this program this handler will never be called.
[]( leaf::error_info const & unmatched )
{
std::cerr <<
"Unknown failure detected" << std::endl <<
"Cryptic diagnostic information follows" << std::endl <<
unmatched;
return 6;
} );
}
// Implementations of the functions called by main:
// Parse the command line, return the file name.
result<char const *> parse_command_line( int argc, char const * argv[] )
{
if( argc == 2 )
return argv[1];
else
return leaf::new_error(bad_command_line);
}
// Open a file for reading.
result<std::shared_ptr<FILE>> file_open( char const * file_name )
{
if( FILE * f = fopen(file_name, "rb") )
return std::shared_ptr<FILE>(f, &fclose);
else
return leaf::new_error(open_error, leaf::e_errno{errno});
}
// Return the size of the file.
result<std::size_t> file_size( FILE & f )
{
auto load = leaf::on_error([] { return leaf::e_errno{errno}; });
if( fseek(&f, 0, SEEK_END) )
return leaf::new_error(size_error);
long s = ftell(&f);
if( s == -1L )
return leaf::new_error(size_error);
if( fseek(&f,0,SEEK_SET) )
return leaf::new_error(size_error);
return std::size_t(s);
}
// Read size bytes from f into buf.
result<void> file_read( FILE & f, void * buf, std::size_t size )
{
std::size_t n = fread(buf, 1, size, &f);
if( ferror(&f) )
return leaf::new_error(read_error, leaf::e_errno{errno});
if( n != size )
return leaf::new_error(eof_error);
return { };
}
////////////////////////////////////////
#ifdef BOOST_LEAF_NO_EXCEPTIONS
namespace boost
{
BOOST_NORETURN void throw_exception( std::exception const & e )
{
std::cerr << "Terminating due to a C++ exception under BOOST_LEAF_NO_EXCEPTIONS: " << e.what();
std::terminate();
}
struct source_location;
BOOST_NORETURN void throw_exception( std::exception const & e, boost::source_location const & )
{
throw_exception(e);
}
}
#endif
|