File: differential_evolution.cpp

package info (click to toggle)
boost1.90 1.90.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 593,120 kB
  • sloc: cpp: 4,190,908; xml: 196,648; python: 34,618; ansic: 23,145; asm: 5,468; sh: 3,774; makefile: 1,161; perl: 1,020; sql: 728; ruby: 676; yacc: 478; java: 77; lisp: 24; csh: 6
file content (41 lines) | stat: -rw-r--r-- 1,572 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/*
 * Copyright Nick Thompson, 2023
 * Use, modification and distribution are subject to the
 * Boost Software License, Version 1.0. (See accompanying file
 * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 */
#include <iostream>
#include <boost/math/optimization/differential_evolution.hpp>

using boost::math::optimization::differential_evolution_parameters;
using boost::math::optimization::differential_evolution;

double rosenbrock(std::vector<double> const & x) {
   double result = 0;
   for (size_t i = 0; i < x.size() - 1; ++i) {
       double tmp = x[i+1] - x[i]*x[i];
       result += 100*tmp*tmp + (1-x[i])*(1-x[i]); 
   }
   return result;
}

int main() {
    auto de_params = differential_evolution_parameters<std::vector<double>>();
    constexpr const size_t dimension = 10;
    // Search on [0, 2]^dimension:
    de_params.lower_bounds.resize(dimension, 0);
    de_params.upper_bounds.resize(dimension, 2);
    // This is a challenging function, increase the max generations 10x from default so we don't terminate prematurely:
    de_params.max_generations *= 10;
    std::random_device rd;
    std::mt19937_64 rng(rd());
    // The global minima is exactly zero-but some leeway is required:
    double value_to_reach = 1e-5;
    auto local_minima = differential_evolution(rosenbrock, de_params, rng, value_to_reach);
    std::cout << "Minima: {";
    for (auto l : local_minima) {
        std::cout << l << ", ";
    }
    std::cout << "}\n";
    std::cout << "Value of cost function at minima: " << rosenbrock(local_minima) << "\n";
}