1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
// Copyright 2024 Christophe Henry
// henry UNDERSCORE christophe AT hotmail DOT com
// This is an extended version of the state machine available in the boost::mpl library
// Distributed under the same license as the original.
// Copyright for the original version:
// Copyright 2005 David Abrahams and Aleksey Gurtovoy. Distributed
// under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// back-end
#include "BackCommon.hpp"
//front-end
#include <boost/msm/front/functor_row.hpp>
#include <boost/msm/front/state_machine_def.hpp>
#ifndef BOOST_MSM_NONSTANDALONE_TEST
#define BOOST_TEST_MODULE backmp11_many_defer_transitions
#endif
#include <boost/test/unit_test.hpp>
using namespace boost::msm::front;
using namespace boost::msm::backmp11;
namespace mp11 = boost::mp11;
// Events
struct Event1 {};
struct Event2 {};
struct Event3 {};
struct Event4 {};
namespace uml_defer_transitions
{
// States
struct State1 : state<>
{
using deferred_events = mp11::mp_list<Event1, Event2, Event3>;
};
struct State2 : state<>
{
using deferred_events = mp11::mp_list<Event1, Event3>;
};
struct State3 : state<>
{
};
struct State4 : state<>
{
};
struct State5 : state<>
{
};
// ----- State machine
struct Sm1_ : state_machine_def<Sm1_>
{
// Set initial state
typedef State1 initial_state;
// Enable deferred capability
typedef int activate_deferred_events;
// Transition table
using transition_table = mp11::mp_list<
// Start Event Next Action
Row < State1, Event4, State2, none >,
Row < State2, Event2, State3, none >,
Row < State3, Event1, State4, none >,
Row < State3, Event3, State5, none >,
Row < State4, Event3, State5, none >,
Row < State5, Event1, State4, none >
>;
};
// Pick a back-end
using TestMachines = mp11::mp_list<
#ifndef BOOST_MSM_TEST_SKIP_BACKMP11
state_machine<Sm1_>,
state_machine<Sm1_, favor_compile_time_config>
#endif // BOOST_MSM_TEST_SKIP_BACKMP11
>;
BOOST_AUTO_TEST_CASE_TEMPLATE(uml_defer_transitions, TestMachine, TestMachines)
{
TestMachine state_machine;
state_machine.start();
state_machine.process_event(Event1());
// Queue: Event1
BOOST_REQUIRE(state_machine.get_deferred_events_queue().size() == 1);
state_machine.process_event(Event2());
// Queue: Event1, Event2
BOOST_REQUIRE(state_machine.get_deferred_events_queue().size() == 2);
state_machine.process_event(Event3());
// Queue: Event1, Event2, Event3
BOOST_REQUIRE(state_machine.get_deferred_events_queue().size() == 3);
state_machine.process_event(Event4());
// Event4 gets consumed, new state is State2.
// Event1 stays deferred (queue: Event1, Event2, Event3)
// Event2 gets consumed, new state is State3 (queue: Event1, Event3)
// Event1 gets consumed, new state is State4 (queue: Event3)
// Event3 gets consumed, new state is State5
BOOST_REQUIRE(state_machine.get_deferred_events_queue().size() == 0);
BOOST_REQUIRE(state_machine.template is_state_active<State5>());
}
} // namespace uml_defer_transitions
// Test case for manual deferral by using transitions with Defer actions.
// Not specified in UML and thus no clear semantics how it should behave.
// Currently a Defer action consumes the event (it gets removed from the queue)
// and then defers it (it gets pushed back to the queue), the Defer action
// returns HANDLED_DEFERRED as processing result).
namespace action_defer_transitions
{
// States
struct State1 : state<>
{
};
struct State2 : state<>
{
};
struct State3 : state<>
{
};
struct State4 : state<>
{
};
struct State5 : state<>
{
};
// ----- State machine
struct Sm1_ : state_machine_def<Sm1_>
{
// Set initial state
typedef State1 initial_state;
// Enable deferred capability
typedef int activate_deferred_events;
// Transition table
using transition_table = mp11::mp_list<
// Start Event Next Action
Row < State1, Event1, none , Defer>,
Row < State1, Event2, none , Defer>,
Row < State1, Event3, none , Defer>,
Row < State1, Event4, State2, none >,
Row < State2, Event3, none , Defer>,
Row < State2, Event1, none , Defer>,
Row < State2, Event2, State3, none >,
Row < State3, Event1, State4, none >,
Row < State3, Event3, State5, none >,
Row < State4, Event3, State5, none >,
Row < State5, Event1, State4, none >
>;
};
// Pick a back-end
using TestMachines = mp11::mp_list<
#ifndef BOOST_MSM_TEST_SKIP_BACKMP11
state_machine<Sm1_>,
state_machine<Sm1_, favor_compile_time_config>
#endif // BOOST_MSM_TEST_SKIP_BACKMP11
>;
BOOST_AUTO_TEST_CASE_TEMPLATE(action_defer_transitions, TestMachine, TestMachines)
{
TestMachine state_machine;
state_machine.start();
state_machine.process_event(Event1());
// Queue: Event1
BOOST_REQUIRE(state_machine.get_deferred_events_queue().size() == 1);
state_machine.process_event(Event2());
// Queue: Event2, Event1
BOOST_REQUIRE(state_machine.get_deferred_events_queue().size() == 2);
state_machine.process_event(Event3());
// Queue: Event3, Event2, Event1
BOOST_REQUIRE(state_machine.get_deferred_events_queue().size() == 3);
state_machine.process_event(Event4());
// Event4 gets consumed, new state is State2.
// Event3 gets deferred (queue: Event2, Event1, Event3)
// Event2 gets consumed, new state is State3 (queue: Event1, Event3)
// Event1 gets consumed, new state is State4 (queue: Event3)
BOOST_REQUIRE(state_machine.get_deferred_events_queue().size() == 1);
BOOST_REQUIRE(state_machine.template is_state_active<State4>());
}
} // namespace action_defer_transitions
|