1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
// Copyright 2010 Christophe Henry
// henry UNDERSCORE christophe AT hotmail DOT com
// This is an extended version of the state machine available in the boost::mpl library
// Distributed under the same license as the original.
// Copyright for the original version:
// Copyright 2005 David Abrahams and Aleksey Gurtovoy. Distributed
// under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// back-end
#include "BackCommon.hpp"
//front-end
#include <boost/msm/front/state_machine_def.hpp>
#include <boost/msm/front/functor_row.hpp>
#ifndef BOOST_MSM_NONSTANDALONE_TEST
#define BOOST_TEST_MODULE test_defer_and_message_queue
#endif
#include <boost/test/unit_test.hpp>
namespace msm = boost::msm;
namespace mpl = boost::mpl;
using namespace boost::msm::front;
namespace
{
// events
struct eventResolve {};
struct eventConnect {};
struct eventResolved {};
struct eventRead {};
struct eventd {};
// front-end: define the FSM structure
struct player_ : public msm::front::state_machine_def<player_>
{
player_()
:expected_action_counter(0)
{}
struct enqueue_action1
{
template <class EVT,class FSM,class SourceState,class TargetState>
void operator()(EVT const& ,FSM& fsm,SourceState& ,TargetState& )
{
fsm.process_event(eventResolve());
}
};
struct enqueue_action2
{
template <class EVT,class FSM,class SourceState,class TargetState>
void operator()(EVT const& ,FSM& fsm,SourceState& ,TargetState& )
{
fsm.process_event(eventConnect());
}
};
struct expected_action
{
template <class EVT,class FSM,class SourceState,class TargetState>
void operator()(EVT const& ,FSM& fsm,SourceState& ,TargetState& )
{
++fsm.expected_action_counter;
//std::cout << "expected action called" << std::endl;
}
};
struct unexpected_action
{
template <class EVT,class FSM,class SourceState,class TargetState>
void operator()(EVT const& ,FSM& ,SourceState& ,TargetState& )
{
std::cout << "unexpected action called" << std::endl;
}
};
// The list of FSM states
struct Unresolved : public msm::front::state<>
{
typedef mpl::vector<eventRead > deferred_events;
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
// Transition table for Empty
struct internal_transition_table : mpl::vector<
// Start Event Next Action Guard
Internal < eventConnect , msm::front::ActionSequence_<mpl::vector<enqueue_action1,enqueue_action2>> >
// +---------+-------------+---------+---------------------+----------------------+
> {};
};
struct Resolving : public msm::front::state<>
{
typedef mpl::vector<eventConnect > deferred_events;
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
struct Resolved : public msm::front::state<>
{
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
struct Connecting : public msm::front::state<>
{
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
struct State22 : public msm::front::state<>
{
template <class Event,class FSM>
void on_entry(Event const&,FSM& ) {++entry_counter;}
template <class Event,class FSM>
void on_exit(Event const&,FSM& ) {++exit_counter;}
int entry_counter;
int exit_counter;
};
// the initial state of the player SM. Must be defined
typedef mpl::vector<Unresolved,State22> initial_state;
// Transition table for player
struct transition_table : mpl::vector<
// Start Event Next Action Guard
// +---------+-------------+---------+---------------------+----------------------+
Row < Unresolved , eventResolve , Resolving >,
Row < Resolving , eventResolved , Resolved >,
Row < Resolved , eventConnect , Connecting , expected_action >,
Row < State22 , eventd , State22 >
// +---------+-------------+---------+---------------------+----------------------+
> {};
// Replaces the default no-transition response.
template <class FSM,class Event>
void no_transition(Event const& , FSM&,int )
{
BOOST_FAIL("no_transition called!");
}
// init counters
template <class Event,class FSM>
void on_entry(Event const&,FSM& fsm)
{
fsm.template get_state<player_::Unresolved&>().entry_counter=0;
fsm.template get_state<player_::Unresolved&>().exit_counter=0;
fsm.template get_state<player_::Resolving&>().entry_counter=0;
fsm.template get_state<player_::Resolving&>().exit_counter=0;
fsm.template get_state<player_::Resolved&>().entry_counter=0;
fsm.template get_state<player_::Resolved&>().exit_counter=0;
fsm.template get_state<player_::Connecting&>().entry_counter=0;
fsm.template get_state<player_::Connecting&>().exit_counter=0;
}
int expected_action_counter;
};
// Pick a back-end
typedef get_test_machines<player_> players;
BOOST_AUTO_TEST_CASE_TEMPLATE( test_defer_and_message_queue, player, players )
{
player p;
// needed to start the highest-level SM. This will call on_entry and mark the start of the SM
p.start();
p.process_event(eventConnect());
BOOST_CHECK_MESSAGE(p.current_state()[0] == 1,"Resolving should be active");
BOOST_CHECK_MESSAGE(p.current_state()[1] == 3,"State22 should be active");
BOOST_CHECK_MESSAGE(p.template get_state<player_::Unresolved&>().exit_counter == 1,"Unresolved exit not called correctly");
BOOST_CHECK_MESSAGE(p.template get_state<player_::Unresolved&>().entry_counter == 1,"Unresolved entry not called correctly");
BOOST_CHECK_MESSAGE(p.template get_state<player_::Resolving&>().entry_counter == 1,"Resolving entry not called correctly");
p.process_event(eventResolved());
BOOST_CHECK_MESSAGE(p.current_state()[0] == 4,"Connecting should be active");
BOOST_CHECK_MESSAGE(p.current_state()[1] == 3,"State22 should be active");
BOOST_CHECK_MESSAGE(p.template get_state<player_::Resolved&>().exit_counter == 1,"Resolved exit not called correctly");
BOOST_CHECK_MESSAGE(p.template get_state<player_::Resolved&>().entry_counter == 1,"Resolved entry not called correctly");
BOOST_CHECK_MESSAGE(p.template get_state<player_::Resolving&>().exit_counter == 1,"Resolving exit not called correctly");
BOOST_CHECK_MESSAGE(p.template get_state<player_::Connecting&>().entry_counter == 1,"Connecting entry not called correctly");
BOOST_CHECK_MESSAGE(p.expected_action_counter == 1,"expected_action should have been called");
}
}
|