1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
// (C) Copyright John Maddock 2019.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// Contains Quickbook snippets used by boost/libs/multiprecision/doc/multiprecision.qbk,
// section Literal Types and constexpr Support.
#include <iostream>
#include <boost/config.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
#endif
//[constexpr_circle
#include <boost/math/constants/constants.hpp> // For constant pi with full precision of type T.
// using boost::math::constants::pi;
template <class T>
inline constexpr T circumference(T radius)
{
return 2 * boost::math::constants::pi<T>() * radius;
}
template <class T>
inline constexpr T area(T radius)
{
return boost::math::constants::pi<T>() * radius * radius;
}
//] [/constexpr_circle]
template <class T, unsigned Order>
struct const_polynomial
{
public:
T data[Order + 1];
public:
constexpr const_polynomial(T val = 0) : data{val} {}
constexpr const_polynomial(const std::initializer_list<T>& init) : data{}
{
if (init.size() > Order + 1)
throw std::range_error("Too many initializers in list!");
for (unsigned i = 0; i < init.size(); ++i)
data[i] = init.begin()[i];
}
constexpr T& operator[](std::size_t N)
{
return data[N];
}
constexpr const T& operator[](std::size_t N) const
{
return data[N];
}
template <class U>
constexpr T operator()(U val)const
{
T result = data[Order];
for (unsigned i = Order; i > 0; --i)
{
result *= val;
result += data[i - 1];
}
return result;
}
constexpr const_polynomial<T, Order - 1> derivative() const
{
const_polynomial<T, Order - 1> result;
for (unsigned i = 1; i <= Order; ++i)
{
result[i - 1] = (*this)[i] * i;
}
return result;
}
constexpr const_polynomial operator-()
{
const_polynomial t(*this);
for (unsigned i = 0; i <= Order; ++i)
t[i] = -t[i];
return t;
}
template <class U>
constexpr const_polynomial& operator*=(U val)
{
for (unsigned i = 0; i <= Order; ++i)
data[i] = data[i] * val;
return *this;
}
template <class U>
constexpr const_polynomial& operator/=(U val)
{
for (unsigned i = 0; i <= Order; ++i)
data[i] = data[i] / val;
return *this;
}
template <class U>
constexpr const_polynomial& operator+=(U val)
{
data[0] += val;
return *this;
}
template <class U>
constexpr const_polynomial& operator-=(U val)
{
data[0] -= val;
return *this;
}
};
template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, (Order1 > Order2 ? Order1 : Order2)> operator+(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
if
constexpr(Order1 > Order2)
{
const_polynomial<T, Order1> result(a);
for (unsigned i = 0; i <= Order2; ++i)
result[i] += b[i];
return result;
}
else
{
const_polynomial<T, Order2> result(b);
for (unsigned i = 0; i <= Order1; ++i)
result[i] += a[i];
return result;
}
}
template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, (Order1 > Order2 ? Order1 : Order2)> operator-(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
if
constexpr(Order1 > Order2)
{
const_polynomial<T, Order1> result(a);
for (unsigned i = 0; i <= Order2; ++i)
result[i] -= b[i];
return result;
}
else
{
const_polynomial<T, Order2> result(b);
for (unsigned i = 0; i <= Order1; ++i)
result[i] = a[i] - b[i];
return result;
}
}
template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, Order1 + Order2> operator*(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
const_polynomial<T, Order1 + Order2> result;
for (unsigned i = 0; i <= Order1; ++i)
{
for (unsigned j = 0; j <= Order2; ++j)
{
result[i + j] += a[i] * b[j];
}
}
return result;
}
template <class T, unsigned Order, class U>
inline constexpr const_polynomial<T, Order> operator*(const const_polynomial<T, Order>& a, const U& b)
{
const_polynomial<T, Order> result(a);
for (unsigned i = 0; i <= Order; ++i)
{
result[i] *= b;
}
return result;
}
template <class U, class T, unsigned Order>
inline constexpr const_polynomial<T, Order> operator*(const U& b, const const_polynomial<T, Order>& a)
{
const_polynomial<T, Order> result(a);
for (unsigned i = 0; i <= Order; ++i)
{
result[i] *= b;
}
return result;
}
template <class T, unsigned Order, class U>
inline constexpr const_polynomial<T, Order> operator/(const const_polynomial<T, Order>& a, const U& b)
{
const_polynomial<T, Order> result;
for (unsigned i = 0; i <= Order; ++i)
{
result[i] /= b;
}
return result;
}
//[hermite_example
template <class T, unsigned Order>
class hermite_polynomial
{
const_polynomial<T, Order> m_data;
public:
constexpr hermite_polynomial() : m_data(hermite_polynomial<T, Order - 1>().data() * const_polynomial<T, 1>{0, 2} - hermite_polynomial<T, Order - 1>().data().derivative())
{
}
constexpr const const_polynomial<T, Order>& data() const
{
return m_data;
}
constexpr const T& operator[](std::size_t N)const
{
return m_data[N];
}
template <class U>
constexpr T operator()(U val)const
{
return m_data(val);
}
};
//] [/hermite_example]
//[hermite_example2
template <class T>
class hermite_polynomial<T, 0>
{
const_polynomial<T, 0> m_data;
public:
constexpr hermite_polynomial() : m_data{1} {}
constexpr const const_polynomial<T, 0>& data() const
{
return m_data;
}
constexpr const T& operator[](std::size_t N) const
{
return m_data[N];
}
template <class U>
constexpr T operator()(U val)
{
return m_data(val);
}
};
template <class T>
class hermite_polynomial<T, 1>
{
const_polynomial<T, 1> m_data;
public:
constexpr hermite_polynomial() : m_data{0, 2} {}
constexpr const const_polynomial<T, 1>& data() const
{
return m_data;
}
constexpr const T& operator[](std::size_t N) const
{
return m_data[N];
}
template <class U>
constexpr T operator()(U val)
{
return m_data(val);
}
};
//] [/hermite_example2]
void test_double()
{
constexpr double radius = 2.25;
constexpr double c = circumference(radius);
constexpr double a = area(radius);
std::cout << "Circumference = " << c << std::endl;
std::cout << "Area = " << a << std::endl;
constexpr const_polynomial<double, 2> pa = {3, 4};
constexpr const_polynomial<double, 2> pb = {5, 6};
static_assert(pa[0] == 3);
static_assert(pa[1] == 4);
constexpr auto pc = pa * 2;
static_assert(pc[0] == 6);
static_assert(pc[1] == 8);
constexpr auto pd = 3 * pa;
static_assert(pd[0] == 3 * 3);
static_assert(pd[1] == 4 * 3);
constexpr auto pe = pa + pb;
static_assert(pe[0] == 3 + 5);
static_assert(pe[1] == 4 + 6);
constexpr auto pf = pa - pb;
static_assert(pf[0] == 3 - 5);
static_assert(pf[1] == 4 - 6);
constexpr auto pg = pa * pb;
static_assert(pg[0] == 15);
static_assert(pg[1] == 38);
static_assert(pg[2] == 24);
#if defined(__clang__) && (__clang_major__ < 6)
#else
constexpr hermite_polynomial<double, 2> h1;
static_assert(h1[0] == -2);
static_assert(h1[1] == 0);
static_assert(h1[2] == 4);
constexpr hermite_polynomial<double, 3> h3;
static_assert(h3[0] == 0);
static_assert(h3[1] == -12);
static_assert(h3[2] == 0);
static_assert(h3[3] == 8);
constexpr hermite_polynomial<double, 9> h9;
static_assert(h9[0] == 0);
static_assert(h9[1] == 30240);
static_assert(h9[2] == 0);
static_assert(h9[3] == -80640);
static_assert(h9[4] == 0);
static_assert(h9[5] == 48384);
static_assert(h9[6] == 0);
static_assert(h9[7] == -9216);
static_assert(h9[8] == 0);
static_assert(h9[9] == 512);
static_assert(h9(0.5) == 6481);
#endif
}
void test_float128()
{
#ifdef BOOST_HAS_FLOAT128
//[constexpr_circle_usage
using boost::multiprecision::float128;
constexpr float128 radius = 2.25;
constexpr float128 c = circumference(radius);
constexpr float128 a = area(radius);
std::cout << "Circumference = " << c << std::endl;
std::cout << "Area = " << a << std::endl;
//] [/constexpr_circle_usage]
constexpr hermite_polynomial<float128, 2> h1;
static_assert(h1[0] == -2);
static_assert(h1[1] == 0);
static_assert(h1[2] == 4);
constexpr hermite_polynomial<float128, 3> h3;
static_assert(h3[0] == 0);
static_assert(h3[1] == -12);
static_assert(h3[2] == 0);
static_assert(h3[3] == 8);
//[hermite_example3
constexpr hermite_polynomial<float128, 9> h9;
//
// Verify that the polynomial's coefficients match the known values:
//
static_assert(h9[0] == 0);
static_assert(h9[1] == 30240);
static_assert(h9[2] == 0);
static_assert(h9[3] == -80640);
static_assert(h9[4] == 0);
static_assert(h9[5] == 48384);
static_assert(h9[6] == 0);
static_assert(h9[7] == -9216);
static_assert(h9[8] == 0);
static_assert(h9[9] == 512);
//
// Define an abscissa value to evaluate at:
constexpr float128 abscissa(0.5);
//
// Evaluate H_9(0.5) using all constexpr arithmetic, and check that it has the expected result:
static_assert(h9(abscissa) == 6481);
//]
#endif
}
int main()
{
test_double();
test_float128();
std::cout << "Done!" << std::endl;
}
|