File: constexpr_float_arithmetic_examples.cpp

package info (click to toggle)
boost1.90 1.90.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 593,120 kB
  • sloc: cpp: 4,190,908; xml: 196,648; python: 34,618; ansic: 23,145; asm: 5,468; sh: 3,774; makefile: 1,161; perl: 1,020; sql: 728; ruby: 676; yacc: 478; java: 77; lisp: 24; csh: 6
file content (383 lines) | stat: -rw-r--r-- 9,922 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
//  (C) Copyright John Maddock 2019.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

// Contains Quickbook snippets used by boost/libs/multiprecision/doc/multiprecision.qbk,
// section Literal Types and constexpr Support.

#include <iostream>
#include <boost/config.hpp>

#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
#endif

//[constexpr_circle
#include <boost/math/constants/constants.hpp> // For constant pi with full precision of type T.
// using  boost::math::constants::pi;

template <class T>
inline constexpr T circumference(T radius)
{
   return 2 * boost::math::constants::pi<T>() * radius;
}

template <class T>
inline constexpr T area(T radius)
{
   return boost::math::constants::pi<T>() * radius * radius;
}
//] [/constexpr_circle]

template <class T, unsigned Order>
struct const_polynomial
{
 public:
   T data[Order + 1];

 public:
   constexpr const_polynomial(T val = 0) : data{val} {}
   constexpr const_polynomial(const std::initializer_list<T>& init) : data{}
   {
      if (init.size() > Order + 1)
         throw std::range_error("Too many initializers in list!");
      for (unsigned i = 0; i < init.size(); ++i)
         data[i] = init.begin()[i];
   }
   constexpr T& operator[](std::size_t N)
   {
      return data[N];
   }
   constexpr const T& operator[](std::size_t N) const
   {
      return data[N];
   }
   template <class U>
   constexpr T operator()(U val)const
   {
      T result = data[Order];
      for (unsigned i = Order; i > 0; --i)
      {
         result *= val;
         result += data[i - 1];
      }
      return result;
   }
   constexpr const_polynomial<T, Order - 1> derivative() const
   {
      const_polynomial<T, Order - 1> result;
      for (unsigned i = 1; i <= Order; ++i)
      {
         result[i - 1] = (*this)[i] * i;
      }
      return result;
   }
   constexpr const_polynomial operator-()
   {
      const_polynomial t(*this);
      for (unsigned i = 0; i <= Order; ++i)
         t[i] = -t[i];
      return t;
   }
   template <class U>
   constexpr const_polynomial& operator*=(U val)
   {
      for (unsigned i = 0; i <= Order; ++i)
         data[i] = data[i] * val;
      return *this;
   }
   template <class U>
   constexpr const_polynomial& operator/=(U val)
   {
      for (unsigned i = 0; i <= Order; ++i)
         data[i] = data[i] / val;
      return *this;
   }
   template <class U>
   constexpr const_polynomial& operator+=(U val)
   {
      data[0] += val;
      return *this;
   }
   template <class U>
   constexpr const_polynomial& operator-=(U val)
   {
      data[0] -= val;
      return *this;
   }
};

template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, (Order1 > Order2 ? Order1 : Order2)> operator+(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
   if
      constexpr(Order1 > Order2)
      {
         const_polynomial<T, Order1> result(a);
         for (unsigned i = 0; i <= Order2; ++i)
            result[i] += b[i];
         return result;
      }
   else
   {
      const_polynomial<T, Order2> result(b);
      for (unsigned i = 0; i <= Order1; ++i)
         result[i] += a[i];
      return result;
   }
}
template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, (Order1 > Order2 ? Order1 : Order2)> operator-(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
   if
      constexpr(Order1 > Order2)
      {
         const_polynomial<T, Order1> result(a);
         for (unsigned i = 0; i <= Order2; ++i)
            result[i] -= b[i];
         return result;
      }
   else
   {
      const_polynomial<T, Order2> result(b);
      for (unsigned i = 0; i <= Order1; ++i)
         result[i] = a[i] - b[i];
      return result;
   }
}
template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, Order1 + Order2> operator*(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
   const_polynomial<T, Order1 + Order2> result;
   for (unsigned i = 0; i <= Order1; ++i)
   {
      for (unsigned j = 0; j <= Order2; ++j)
      {
         result[i + j] += a[i] * b[j];
      }
   }
   return result;
}
template <class T, unsigned Order, class U>
inline constexpr const_polynomial<T, Order> operator*(const const_polynomial<T, Order>& a, const U& b)
{
   const_polynomial<T, Order> result(a);
   for (unsigned i = 0; i <= Order; ++i)
   {
      result[i] *= b;
   }
   return result;
}
template <class U, class T, unsigned Order>
inline constexpr const_polynomial<T, Order> operator*(const U& b, const const_polynomial<T, Order>& a)
{
   const_polynomial<T, Order> result(a);
   for (unsigned i = 0; i <= Order; ++i)
   {
      result[i] *= b;
   }
   return result;
}
template <class T, unsigned Order, class U>
inline constexpr const_polynomial<T, Order> operator/(const const_polynomial<T, Order>& a, const U& b)
{
   const_polynomial<T, Order> result;
   for (unsigned i = 0; i <= Order; ++i)
   {
      result[i] /= b;
   }
   return result;
}

//[hermite_example
template <class T, unsigned Order>
class hermite_polynomial
{
   const_polynomial<T, Order> m_data;

 public:
   constexpr hermite_polynomial() : m_data(hermite_polynomial<T, Order - 1>().data() * const_polynomial<T, 1>{0, 2} - hermite_polynomial<T, Order - 1>().data().derivative())
   {
   }
   constexpr const const_polynomial<T, Order>& data() const
   {
      return m_data;
   }
   constexpr const T& operator[](std::size_t N)const
   {
      return m_data[N];
   }
   template <class U>
   constexpr T operator()(U val)const
   {
      return m_data(val);
   }
};
//] [/hermite_example]

//[hermite_example2
template <class T>
class hermite_polynomial<T, 0>
{
   const_polynomial<T, 0> m_data;

 public:
   constexpr hermite_polynomial() : m_data{1} {}
   constexpr const const_polynomial<T, 0>& data() const
   {
      return m_data;
   }
   constexpr const T& operator[](std::size_t N) const
   {
      return m_data[N];
   }
   template <class U>
   constexpr T operator()(U val)
   {
      return m_data(val);
   }
};

template <class T>
class hermite_polynomial<T, 1>
{
   const_polynomial<T, 1> m_data;

 public:
   constexpr hermite_polynomial() : m_data{0, 2} {}
   constexpr const const_polynomial<T, 1>& data() const
   {
      return m_data;
   }
   constexpr const T& operator[](std::size_t N) const
   {
      return m_data[N];
   }
   template <class U>
   constexpr T operator()(U val)
   {
      return m_data(val);
   }
};
//] [/hermite_example2]


void test_double()
{
   constexpr double radius = 2.25;
   constexpr double c      = circumference(radius);
   constexpr double a      = area(radius);

   std::cout << "Circumference = " << c << std::endl;
   std::cout << "Area = " << a << std::endl;

   constexpr const_polynomial<double, 2> pa = {3, 4};
   constexpr const_polynomial<double, 2> pb = {5, 6};
   static_assert(pa[0] == 3);
   static_assert(pa[1] == 4);
   constexpr auto pc = pa * 2;
   static_assert(pc[0] == 6);
   static_assert(pc[1] == 8);
   constexpr auto pd = 3 * pa;
   static_assert(pd[0] == 3 * 3);
   static_assert(pd[1] == 4 * 3);
   constexpr auto pe = pa + pb;
   static_assert(pe[0] == 3 + 5);
   static_assert(pe[1] == 4 + 6);
   constexpr auto pf = pa - pb;
   static_assert(pf[0] == 3 - 5);
   static_assert(pf[1] == 4 - 6);
   constexpr auto pg = pa * pb;
   static_assert(pg[0] == 15);
   static_assert(pg[1] == 38);
   static_assert(pg[2] == 24);

   #if defined(__clang__) && (__clang_major__ < 6)
   #else
   constexpr hermite_polynomial<double, 2> h1;
   static_assert(h1[0] == -2);
   static_assert(h1[1] == 0);
   static_assert(h1[2] == 4);

   constexpr hermite_polynomial<double, 3> h3;
   static_assert(h3[0] == 0);
   static_assert(h3[1] == -12);
   static_assert(h3[2] == 0);
   static_assert(h3[3] == 8);

   constexpr hermite_polynomial<double, 9> h9;
   static_assert(h9[0] == 0);
   static_assert(h9[1] == 30240);
   static_assert(h9[2] == 0);
   static_assert(h9[3] == -80640);
   static_assert(h9[4] == 0);
   static_assert(h9[5] == 48384);
   static_assert(h9[6] == 0);
   static_assert(h9[7] == -9216);
   static_assert(h9[8] == 0);
   static_assert(h9[9] == 512);

   static_assert(h9(0.5) == 6481);
   #endif
}

void test_float128()
{
#ifdef BOOST_HAS_FLOAT128
//[constexpr_circle_usage

   using boost::multiprecision::float128;

   constexpr float128 radius = 2.25;
   constexpr float128 c      = circumference(radius);
   constexpr float128 a      = area(radius);

   std::cout << "Circumference = " << c << std::endl;
   std::cout << "Area = " << a << std::endl;

 //]   [/constexpr_circle_usage]


   constexpr hermite_polynomial<float128, 2> h1;
   static_assert(h1[0] == -2);
   static_assert(h1[1] == 0);
   static_assert(h1[2] == 4);

   constexpr hermite_polynomial<float128, 3> h3;
   static_assert(h3[0] == 0);
   static_assert(h3[1] == -12);
   static_assert(h3[2] == 0);
   static_assert(h3[3] == 8);

   //[hermite_example3
   constexpr hermite_polynomial<float128, 9> h9;
   //
   // Verify that the polynomial's coefficients match the known values:
   //
   static_assert(h9[0] == 0);
   static_assert(h9[1] == 30240);
   static_assert(h9[2] == 0);
   static_assert(h9[3] == -80640);
   static_assert(h9[4] == 0);
   static_assert(h9[5] == 48384);
   static_assert(h9[6] == 0);
   static_assert(h9[7] == -9216);
   static_assert(h9[8] == 0);
   static_assert(h9[9] == 512);
   //
   // Define an abscissa value to evaluate at:
   constexpr float128 abscissa(0.5);
   //
   // Evaluate H_9(0.5) using all constexpr arithmetic, and check that it has the expected result:
   static_assert(h9(abscissa) == 6481);
   //]
#endif
}

int main()
{
   test_double();
   test_float128();
   std::cout << "Done!" << std::endl;
}