1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
///////////////////////////////////////////////////////////////////////////////
// Copyright Christopher Kormanyos 2020 - 2025.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// This example exercises Boost.Multiprecision in concurrent
// multi-threaded environments. To do so a loop involving
// non-trivial calculations of numerous function values
// has been set up within both concurrent as well as
// sequential running environments. In particular,
// this example uses an AGM method to do a "from the ground up"
// calculation of logarithms. The logarithm functions values
// are compared with the values from Boost.Multiprecision's
// specific log functions for the relevant backends.
// The log GM here is not optimized or intended for
// high-performance work, but can be taken as an
// interesting example of an AGM iteration if helpful.
// This example has been initially motivated in part
// by discussions in:
// https://github.com/boostorg/multiprecision/pull/211
// We find the following performance data here:
// https://github.com/boostorg/multiprecision/pull/213
//
// New numbers 2025-07-20 at 301 decimal digits
// --------------------------------------------
//
// cpp_dec_float:
// result_is_ok_concurrent: true, calculation_time_concurrent: 2.1s
// result_is_ok_sequential: true, calculation_time_sequential: 14.7s
//
// cpp_bin_float:
// result_is_ok_concurrent: true, calculation_time_concurrent: 0.28s
// result_is_ok_sequential: true, calculation_time_sequential: 1.88s
//
// gmp_float:
// result_is_ok_concurrent: true, calculation_time_concurrent: 0.11s
// result_is_ok_sequential: true, calculation_time_sequential: 0.73s
//
// mpfr_float:
// result_is_ok_concurrent: true, calculation_time_concurrent: 0.05s
// result_is_ok_sequential: true, calculation_time_sequential: 0.24s
#include <array>
#include <atomic>
#include <chrono>
#include <cstddef>
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <limits>
#include <sstream>
#include <thread>
#include <vector>
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/prime.hpp>
#define BOOST_MP_EXERCISE_THREADING_BACKEND_CPP_DEC_FLOAT 101
#define BOOST_MP_EXERCISE_THREADING_BACKEND_GMP_FLOAT 102
#define BOOST_MP_EXERCISE_THREADING_BACKEND_CPP_BIN_FLOAT 103
#define BOOST_MP_EXERCISE_THREADING_BACKEND_MPFR_FLOAT 104
#if !defined(BOOST_MP_EXERCISE_THREADING_BACKEND_TYPE)
#define BOOST_MP_EXERCISE_THREADING_BACKEND_TYPE BOOST_MP_EXERCISE_THREADING_BACKEND_CPP_DEC_FLOAT
//#define BOOST_MP_EXERCISE_THREADING_BACKEND_TYPE BOOST_MP_EXERCISE_THREADING_BACKEND_CPP_BIN_FLOAT
//#define BOOST_MP_EXERCISE_THREADING_BACKEND_TYPE BOOST_MP_EXERCISE_THREADING_BACKEND_GMP_FLOAT
//#define BOOST_MP_EXERCISE_THREADING_BACKEND_TYPE BOOST_MP_EXERCISE_THREADING_BACKEND_MPFR_FLOAT
#endif
constexpr unsigned local_mp_digits { 301U };
#if (BOOST_MP_EXERCISE_THREADING_BACKEND_TYPE == BOOST_MP_EXERCISE_THREADING_BACKEND_CPP_DEC_FLOAT)
#include <boost/multiprecision/cpp_dec_float.hpp>
using big_float_type = boost::multiprecision::number<boost::multiprecision::cpp_dec_float<local_mp_digits>,
boost::multiprecision::et_off>;
#elif (BOOST_MP_EXERCISE_THREADING_BACKEND_TYPE == BOOST_MP_EXERCISE_THREADING_BACKEND_CPP_BIN_FLOAT)
#include <boost/multiprecision/cpp_bin_float.hpp>
using big_float_type = boost::multiprecision::number<boost::multiprecision::cpp_bin_float<local_mp_digits>,
boost::multiprecision::et_off>;
#elif (BOOST_MP_EXERCISE_THREADING_BACKEND_TYPE == BOOST_MP_EXERCISE_THREADING_BACKEND_GMP_FLOAT)
#include <boost/multiprecision/gmp.hpp>
using big_float_type = boost::multiprecision::number<boost::multiprecision::gmp_float<local_mp_digits>,
boost::multiprecision::et_off>;
#elif (BOOST_MP_EXERCISE_THREADING_BACKEND_TYPE == BOOST_MP_EXERCISE_THREADING_BACKEND_MPFR_FLOAT)
#include <boost/multiprecision/mpfr.hpp>
using big_float_type = boost::multiprecision::number<boost::multiprecision::mpfr_float_backend<local_mp_digits>,
boost::multiprecision::et_off>;
#else
#error BOOST_MP_EXERCISE_THREADING_BACKEND_TYPE is undefined.
#endif
namespace boost { namespace multiprecision { namespace exercise_threading {
namespace detail {
namespace my_concurrency {
template<typename index_type,
typename callable_function_type>
void parallel_for(index_type start,
index_type end,
callable_function_type parallel_function)
{
// Estimate the number of threads available.
static const unsigned int number_of_threads_hint =
std::thread::hardware_concurrency();
static const unsigned int number_of_threads_total =
((number_of_threads_hint == 0U) ? 4U : number_of_threads_hint);
// Use 7/8 of the available cores (leaving a core or two free on modern systems).
static const unsigned int number_of_threads = number_of_threads_total - ((number_of_threads_total + 4U) / 8U);
std::cout << "Executing with " << number_of_threads << " threads" << std::endl;
// Set the size of a slice for the range functions.
index_type n = index_type(end - start) + index_type(1);
index_type slice =
static_cast<index_type>(std::round(n / static_cast<float>(number_of_threads)));
slice = (std::max)(slice, index_type(1));
// Inner loop.
auto launch_range =
[¶llel_function](index_type index_lo, index_type index_hi)
{
for(index_type i = index_lo; i < index_hi; ++i)
{
parallel_function(i);
}
};
// Create the thread pool and launch the jobs.
std::vector<std::thread> pool;
pool.reserve(number_of_threads);
index_type i1 = start;
index_type i2 = (std::min)(index_type(start + slice), end);
for(index_type i = 0U; ((index_type(i + index_type(1U)) < number_of_threads) && (i1 < end)); ++i)
{
pool.emplace_back(launch_range, i1, i2);
i1 = i2;
i2 = (std::min)(index_type(i2 + slice), end);
}
if(i1 < end)
{
pool.emplace_back(launch_range, i1, end);
}
// Wait for the jobs to finish.
for(std::thread& thread_in_pool : pool)
{
if(thread_in_pool.joinable())
{
thread_in_pool.join();
}
}
}
} // namespace my_concurrency
template<typename FloatingPointType,
typename UnsignedIntegralType>
FloatingPointType pown(const FloatingPointType& b, const UnsignedIntegralType& p)
{
// Calculate (b ^ p).
using local_floating_point_type = FloatingPointType;
using local_unsigned_integral_type = UnsignedIntegralType;
local_floating_point_type result;
if (p == local_unsigned_integral_type(0U)) { result = local_floating_point_type(1U); }
else if(p == local_unsigned_integral_type(1U)) { result = b; }
else if(p == local_unsigned_integral_type(2U)) { result = b; result *= b; }
else
{
result = local_floating_point_type(1U);
local_floating_point_type y(b);
for(local_unsigned_integral_type p_local(p); p_local != local_unsigned_integral_type(0U); p_local >>= 1U)
{
if((static_cast<unsigned>(p_local) & 1U) != 0U)
{
result *= y;
}
y *= y;
}
}
return result;
}
const std::vector<std::uint32_t>& primes()
{
static std::vector<std::uint32_t> my_primes;
if(my_primes.empty())
{
my_primes.resize(10000U);
// Get exactly 10,000 primes.
for(std::size_t i = 0U; i < my_primes.size(); ++i)
{
my_primes[i] = boost::math::prime((unsigned int) i);
}
}
return my_primes;
}
} // namespace detail
template<typename FloatingPointType>
FloatingPointType log(const FloatingPointType& x)
{
// Use an AGM method to compute the logarithm of x.
// For values less than 1 invert the argument and
// remember (in this case) to negate the result below.
const bool b_negate = (x < 1);
const FloatingPointType xx = ((b_negate == false) ? x : 1 / x);
// Set a0 = 1
// Set b0 = 4 / (x * 2^m) = 1 / (x * 2^(m - 2))
FloatingPointType ak(1U);
const float n_times_factor = static_cast<float>(static_cast<float>(std::numeric_limits<FloatingPointType>::digits10) * 1.67F);
const float lgx_over_lg2 = std::log(static_cast<float>(xx)) / std::log(2.0F);
std::int32_t m = static_cast<std::int32_t>(n_times_factor - lgx_over_lg2);
// Ensure that the resulting power is non-negative.
// Also enforce that m >= 8.
m = (std::max)(m, static_cast<std::int32_t>(8));
FloatingPointType bk = detail::pown(FloatingPointType(2), static_cast<std::uint32_t>(m));
bk *= xx;
bk = 4 / bk;
FloatingPointType ak_tmp(0U);
using std::sqrt;
// Determine the requested precision of the upcoming iteration in units of digits10.
const FloatingPointType target_tolerance = sqrt(std::numeric_limits<FloatingPointType>::epsilon()) / 100;
for(std::int32_t k = static_cast<std::int32_t>(0); k < static_cast<std::int32_t>(64); ++k)
{
using std::fabs;
// Check for the number of significant digits to be
// at least half of the requested digits. If at least
// half of the requested digits have been achieved,
// then break after the upcoming iteration.
const bool break_after_this_iteration = ( (k > static_cast<std::int32_t>(4))
&& (fabs(1 - fabs(ak / bk)) < target_tolerance));
ak_tmp = ak;
ak += bk;
ak /= 2;
if(break_after_this_iteration)
{
break;
}
bk *= ak_tmp;
bk = sqrt(bk);
}
// We are now finished with the AGM iteration for log(x).
// Compute log(x) = {pi / [2 * AGM(1, 4 / 2^m)]} - (m * ln2)
// Note at this time that (ak = bk) = AGM(...)
// Retrieve the value of pi, divide by (2 * a) and subtract (m * ln2).
const FloatingPointType result =
boost::math::constants::pi<FloatingPointType>() / (ak * 2)
- (boost::math::constants::ln_two<FloatingPointType>() * m);
return ((b_negate == true) ? -result : result);
}
} } } // namespace boost::multiprecision::exercise_threading
template<typename FloatingPointType>
bool log_agm_concurrent(float& calculation_time)
{
const std::size_t count = boost::multiprecision::exercise_threading::detail::primes().size();
std::vector<FloatingPointType> log_results(count);
std::vector<FloatingPointType> log_control(count);
std::atomic_flag log_agm_lock = ATOMIC_FLAG_INIT;
std::size_t concurrent_log_agm_count = 0U;
const auto start = std::chrono::high_resolution_clock::now();
boost::multiprecision::exercise_threading::detail::my_concurrency::parallel_for
(
std::size_t(0U),
log_results.size(),
[&log_results, &log_control, &concurrent_log_agm_count, &log_agm_lock](std::size_t i)
{
while(log_agm_lock.test_and_set()) { ; }
const FloatingPointType dx = (FloatingPointType(1U) / (boost::multiprecision::exercise_threading::detail::primes()[i]));
log_agm_lock.clear();
const FloatingPointType x = boost::math::constants::catalan<FloatingPointType>() + dx;
const FloatingPointType lr = boost::multiprecision::exercise_threading::log(x);
const FloatingPointType lc = boost::multiprecision::log(x);
while(log_agm_lock.test_and_set()) { ; }
log_results[i] = lr;
log_control[i] = lc;
++concurrent_log_agm_count;
if((concurrent_log_agm_count % 100U) == 0U)
{
std::cout << "log agm concurrent at index "
<< concurrent_log_agm_count
<< " of "
<< log_results.size()
<< ". Total processed so far: "
<< std::fixed
<< std::setprecision(2)
<< (100.0F * float(concurrent_log_agm_count)) / float(log_results.size())
<< "%."
<< "\r";
}
log_agm_lock.clear();
}
);
const auto stop = std::chrono::high_resolution_clock::now();
calculation_time = static_cast<float>(std::chrono::duration_cast<std::chrono::milliseconds>(stop - start).count()) / 1000.0F;
std::cout << std::endl;
std::cout << "Checking results concurrent: ";
bool result_is_ok = true;
const FloatingPointType tol = std::numeric_limits<FloatingPointType>::epsilon() * 1000000U;
for(std::size_t i = 0U; i < log_results.size(); ++i)
{
using std::fabs;
const FloatingPointType close_fraction = fabs(1 - (log_results[i] / log_control[i]));
result_is_ok &= (close_fraction < tol);
}
std::stringstream strm { };
strm << std::boolalpha << result_is_ok;
std::cout << strm.str() << std::endl;
return result_is_ok;
}
template<typename FloatingPointType>
bool log_agm_sequential(float& calculation_time)
{
const std::size_t count = boost::multiprecision::exercise_threading::detail::primes().size();
std::vector<FloatingPointType> log_results(count);
std::vector<FloatingPointType> log_control(count);
const auto start = std::chrono::high_resolution_clock::now();
for(std::size_t i = 0U; i < log_results.size(); ++i)
{
const std::size_t sequential_log_agm_count = i + 1U;
const FloatingPointType dx = (FloatingPointType(1U) / (boost::multiprecision::exercise_threading::detail::primes()[i]));
const FloatingPointType x = boost::math::constants::catalan<FloatingPointType>() + dx;
log_results[i] = boost::multiprecision::exercise_threading::log(x);
log_control[i] = boost::multiprecision::log(x);
if((sequential_log_agm_count % 100U) == 0U)
{
std::cout << "log agm sequential at index "
<< sequential_log_agm_count
<< " of "
<< log_results.size()
<< ". Total processed so far: "
<< std::fixed
<< std::setprecision(2)
<< (100.0F * float(sequential_log_agm_count)) / float(log_results.size())
<< "%."
<< "\r";
}
}
const auto stop = std::chrono::high_resolution_clock::now();
calculation_time = static_cast<float>(std::chrono::duration_cast<std::chrono::milliseconds>(stop - start).count()) / 1000.0F;
std::cout << std::endl;
std::cout << "Checking results sequential: ";
bool result_is_ok = true;
const FloatingPointType tol = std::numeric_limits<FloatingPointType>::epsilon() * 1000000U;
for(std::size_t i = 0U; i < log_results.size(); ++i)
{
using std::fabs;
const FloatingPointType close_fraction = fabs(1 - (log_results[i] / log_control[i]));
result_is_ok &= (close_fraction < tol);
}
std::stringstream strm { };
strm << std::boolalpha << result_is_ok;
std::cout << strm.str() << std::endl;
return result_is_ok;
}
int main()
{
std::cout << "Calculating "
<< boost::multiprecision::exercise_threading::detail::primes().size()
<< " primes"
<< std::endl;
float calculation_time_concurrent { };
float calculation_time_sequential { };
const bool result_is_ok_concurrent = log_agm_concurrent<big_float_type>(calculation_time_concurrent);
const bool result_is_ok_sequential = log_agm_sequential<big_float_type>(calculation_time_sequential);
std::cout << std::endl;
{
std::stringstream strm { };
strm << "result_is_ok_concurrent: "
<< std::boolalpha
<< result_is_ok_concurrent
<< ", calculation_time_concurrent: "
<< std::fixed
<< std::setprecision(2)
<< calculation_time_concurrent
<< "s";
std::cout << strm.str() << std::endl;
}
{
std::stringstream strm { };
strm << "result_is_ok_sequential: "
<< std::boolalpha
<< result_is_ok_sequential
<< ", calculation_time_sequential: "
<< std::fixed
<< std::setprecision(2)
<< calculation_time_sequential
<< "s";
std::cout << strm.str() << std::endl;
}
}
|