File: constexpr_test_cpp_int_6.cpp

package info (click to toggle)
boost1.90 1.90.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 593,120 kB
  • sloc: cpp: 4,190,908; xml: 196,648; python: 34,618; ansic: 23,145; asm: 5,468; sh: 3,774; makefile: 1,161; perl: 1,020; sql: 728; ruby: 676; yacc: 478; java: 77; lisp: 24; csh: 6
file content (266 lines) | stat: -rw-r--r-- 6,834 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//  (C) Copyright John Maddock 2019.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#include "boost/multiprecision/cpp_int.hpp"
#include "test.hpp"

template <class T, unsigned Order>
struct const_polynomial
{
 public:
   T data[Order + 1];

 public:
   constexpr const_polynomial(T val = 0) : data{val} {}
   constexpr const_polynomial(const const_polynomial&) = default;
   constexpr const_polynomial(const std::initializer_list<T>& init) : data{}
   {
      if (init.size() > Order + 1)
         throw std::range_error("Too many initializers in list");
      for (unsigned i = 0; i < init.size(); ++i)
         data[i] = init.begin()[i];
   }
   constexpr T& operator[](std::size_t N)
   {
      return data[N];
   }
   constexpr const T& operator[](std::size_t N) const
   {
      return data[N];
   }
   template <class U>
   constexpr T operator()(U val) const
   {
      T result = data[Order];
      for (unsigned i = Order; i > 0; --i)
      {
         result *= val;
         result += data[i - 1];
      }
      return result;
   }
   constexpr const_polynomial<T, Order - 1> derivative() const
   {
      const_polynomial<T, Order - 1> result;
      for (unsigned i = 1; i <= Order; ++i)
      {
         result[i - 1] = (*this)[i] * i;
      }
      return result;
   }
   constexpr const_polynomial operator-()
   {
      const_polynomial t(*this);
      for (unsigned i = 0; i <= Order; ++i)
         t[i] = -t[i];
      return t;
   }
   template <class U>
   constexpr const_polynomial& operator*=(U val)
   {
      for (unsigned i = 0; i <= Order; ++i)
         data[i] = data[i] * val;
      return *this;
   }
   template <class U>
   constexpr const_polynomial& operator/=(U val)
   {
      for (unsigned i = 0; i <= Order; ++i)
         data[i] = data[i] / val;
      return *this;
   }
   template <class U>
   constexpr const_polynomial& operator+=(U val)
   {
      data[0] += val;
      return *this;
   }
   template <class U>
   constexpr const_polynomial& operator-=(U val)
   {
      data[0] -= val;
      return *this;
   }
};

template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, (Order1 > Order2 ? Order1 : Order2)> operator+(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
   if
      constexpr(Order1 > Order2)
      {
         const_polynomial<T, Order1> result(a);
         for (unsigned i = 0; i <= Order2; ++i)
            result[i] += b[i];
         return result;
      }
   else
   {
      const_polynomial<T, Order2> result(b);
      for (unsigned i = 0; i <= Order1; ++i)
         result[i] += a[i];
      return result;
   }
}
template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, (Order1 > Order2 ? Order1 : Order2)> operator-(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
   if
      constexpr(Order1 > Order2)
      {
         const_polynomial<T, Order1> result(a);
         for (unsigned i = 0; i <= Order2; ++i)
            result[i] -= b[i];
         return result;
      }
   else
   {
      const_polynomial<T, Order2> result(b);
      for (unsigned i = 0; i <= Order1; ++i)
         result[i] = a[i] - b[i];
      return result;
   }
}
template <class T, unsigned Order1, unsigned Order2>
inline constexpr const_polynomial<T, Order1 + Order2> operator*(const const_polynomial<T, Order1>& a, const const_polynomial<T, Order2>& b)
{
   const_polynomial<T, Order1 + Order2> result;
   for (unsigned i = 0; i <= Order1; ++i)
   {
      for (unsigned j = 0; j <= Order2; ++j)
      {
         result[i + j] += a[i] * b[j];
      }
   }
   return result;
}
template <class T, unsigned Order, class U>
inline constexpr const_polynomial<T, Order> operator*(const const_polynomial<T, Order>& a, const U& b)
{
   const_polynomial<T, Order> result(a);
   for (unsigned i = 0; i <= Order; ++i)
   {
      result[i] *= b;
   }
   return result;
}
template <class U, class T, unsigned Order>
inline constexpr const_polynomial<T, Order> operator*(const U& b, const const_polynomial<T, Order>& a)
{
   const_polynomial<T, Order> result(a);
   for (unsigned i = 0; i <= Order; ++i)
   {
      result[i] *= b;
   }
   return result;
}
template <class T, unsigned Order, class U>
inline constexpr const_polynomial<T, Order> operator/(const const_polynomial<T, Order>& a, const U& b)
{
   const_polynomial<T, Order> result;
   for (unsigned i = 0; i <= Order; ++i)
   {
      result[i] /= b;
   }
   return result;
}

template <class T, unsigned Order>
class hermite_polynomial
{
   const_polynomial<T, Order> m_data;

 public:
   constexpr hermite_polynomial() : m_data(hermite_polynomial<T, Order - 1>().data() * const_polynomial<T, 1>{0, 2} - hermite_polynomial<T, Order - 1>().data().derivative())
   {
   }
   constexpr const const_polynomial<T, Order>& data() const
   {
      return m_data;
   }
   constexpr const T& operator[](std::size_t N) const
   {
      return m_data[N];
   }
   template <class U>
   constexpr T operator()(U val) const
   {
      return m_data(val);
   }
};

template <class T>
class hermite_polynomial<T, 0>
{
   const_polynomial<T, 0> m_data;

 public:
   constexpr       hermite_polynomial() : m_data{1} {}
   constexpr const const_polynomial<T, 0>& data() const
   {
      return m_data;
   }
   constexpr const T& operator[](std::size_t N) const
   {
      return m_data[N];
   }
   template <class U>
   constexpr T operator()(U val)
   {
      return m_data(val);
   }
};

template <class T>
class hermite_polynomial<T, 1>
{
   const_polynomial<T, 1> m_data;

 public:
   constexpr       hermite_polynomial() : m_data{0, 2} {}
   constexpr const const_polynomial<T, 1>& data() const
   {
      return m_data;
   }
   constexpr const T& operator[](std::size_t N) const
   {
      return m_data[N];
   }
   template <class U>
   constexpr T operator()(U val)
   {
      return m_data(val);
   }
};



int main()
{
   using namespace boost::multiprecision::literals;

   typedef boost::multiprecision::checked_int1024_t  int_backend;

   // 8192 x^13 - 319488 x^11 + 4392960 x^9 - 26357760 x^7 + 69189120 x^5 - 69189120 x^3 + 17297280 x
   constexpr hermite_polynomial<int_backend, 13> h;

   static_assert(h[0] == 0);
   static_assert(h[1] == 17297280);
   static_assert(h[2] == 0);
   static_assert(h[3] == -69189120);
   static_assert(h[4] == 0);
   static_assert(h[5] == 69189120);
   static_assert(h[6] == 0);
   static_assert(h[7] == -26357760);
   static_assert(h[8] == 0);
   static_assert(h[9] == 4392960);
   static_assert(h[10] == 0);
   static_assert(h[11] == -319488);
   static_assert(h[12] == 0);
   static_assert(h[13] == 8192);

   return boost::report_errors();
}