1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
///////////////////////////////////////////////////////////////
// Copyright 2011 - 2025 John Maddock.
// Copyright Christopher Kormanyos 2002 - 2025.
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
//
// This work is based on an earlier work:
// "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
// in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
#ifdef _MSC_VER
#define _SCL_SECURE_NO_WARNINGS
#pragma warning(disable : 4127)
#endif
#include <test.hpp>
#include <boost/detail/lightweight_test.hpp>
#include <boost/math/constants/constants.hpp>
#if !defined(TEST_MPF_50) && !defined(TEST_MPF) && !defined(TEST_BACKEND) && !defined(TEST_CPP_DEC_FLOAT) && !defined(TEST_MPFR) && !defined(TEST_MPFR_50) && !defined(TEST_MPFI_50) && !defined(TEST_FLOAT128) && !defined(TEST_CPP_BIN_FLOAT) && !defined(TEST_CPP_DOUBLE_FLOAT)
#define TEST_MPF_50
//#define TEST_MPF
#define TEST_BACKEND
#define TEST_CPP_DEC_FLOAT
#define TEST_MPFI_50
#define TEST_FLOAT128
#define TEST_CPP_BIN_FLOAT
#define TEST_CPP_DOUBLE_FLOAT
#ifdef _MSC_VER
#pragma message("CAUTION!!: No backend type specified so testing everything.... this will take some time!!")
#endif
#ifdef __GNUC__
#pragma warning "CAUTION!!: No backend type specified so testing everything.... this will take some time!!"
#endif
#endif
#include <test_traits.hpp> // Note: include this AFTER the test-backends are defined
#if defined(TEST_MPF_50)
#include <boost/multiprecision/gmp.hpp>
#endif
#if defined(TEST_MPFR_50)
#include <boost/multiprecision/mpfr.hpp>
#endif
#if defined(TEST_MPFI_50)
#include <boost/multiprecision/mpfi.hpp>
#endif
#ifdef TEST_BACKEND
#include <boost/multiprecision/concepts/mp_number_archetypes.hpp>
#endif
#ifdef TEST_CPP_DEC_FLOAT
#include <boost/multiprecision/cpp_dec_float.hpp>
#endif
#ifdef TEST_FLOAT128
#include <boost/multiprecision/float128.hpp>
#endif
#ifdef TEST_CPP_BIN_FLOAT
#include <boost/multiprecision/cpp_bin_float.hpp>
#endif
#ifdef TEST_CPP_DOUBLE_FLOAT
#include <boost/multiprecision/cpp_double_fp.hpp>
#endif
#include <array>
#include <ctime>
#include <random>
template<typename FloatType> auto my_zero() -> FloatType&;
template<typename FloatType> auto my_one() -> FloatType&;
template <class T>
void test()
{
std::cout << "Testing type " << typeid(T).name() << std::endl;
unsigned max_err = 0;
BOOST_IF_CONSTEXPR (std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::max_exponent10 > 4000))
{
using table_data_array_type = std::array<const char*, 51u>;
static const table_data_array_type table_data =
{{
"1.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"9.47747587596218770242116751705184563668845029215054154915126374673142219159548534317576897266130328412495991561490384353e76",
"8.98225489794452370997623936390755615068333094834545092387689795875746440121970819499035111276893290879203289092353747850e153",
"8.51291041070124257524798251795398355552294928156627848633073113916721592074889256105483993631579761345100284245144410506e230",
"8.06809030516483860484254925989129017112482132468761563276276594763374886826841745433660192438855214332469192411759402790e307",
"7.64651312322841630493169711336894888932951818957138997327518186691187347879142222644283389432604713409023263917264358401e384",
"7.24696436606255985380192585665173794455118215150711210905481870053193336336731228464367470327868286988180495111406609690e461",
"6.86829299533155197480610865771404565313986987801060270120621935139741577246731459024227828759564450034267891072352816870e538",
"6.50940811722948585242669672360741252715012399316164518226061001845519670701239429603657927628755169479689062519606799624e615",
"6.16927583978348964454665652571294215251327375137123272041877979478545511090085756858225302357977159539777447847855503405e692",
"5.84691629437043896753869572004324228849833391140408095171257918435296982661233664069534601413835876272500275725690968474e769",
"5.54140081286660645835370762406928689330724181979654545550204201113926269281603301564114980528619942840737770415885783439e846",
"5.25184925229805200184933663459660562493261505058724212670923083643709964294855282715531768162298567379648573804433968486e923",
"4.97742745928448409225535325233998957076879979440190164347796593390995994951755710667491911026476108957070504003155645761e1000",
"4.71734486697204622371883518659702954552385115723942808636490157561056417525827884479573988899517566587636669779645610803e1077",
"4.47085221753216236037602345430121605512330975424643767098987010800161616413051148037751552110081034066081309007796182114e1154",
"4.23723940366531198300986713567588008777043812458400705569721660157434941774066620870256745107265536124077734836797938268e1231",
"4.01583342289144005397455901781647949754375366066998182220342540048111140676724909947493787596336610499122085983712119281e1308",
"3.80599643873362813900306284477369187319506389058898599816705625750135796510808933786432614186155972485637939057212164098e1385",
"3.60712394320959592074309301816510372687695286650188776957291994751966018917404878612237961367128638199290387601511358836e1462",
"3.41864301533745457066062991907289263038319874930395315315257927161138360206596116102724713069518697248463965164712972907e1539",
"3.24001067063873569456703204286462007769933831045558617578289414699244767403736057931834775727420762410328297596596814910e1616",
"3.07071229688386868087623659761166306563170839771162347830514606977592027644137144160294469813988158463967740978461420862e1693",
"2.91026017157373047094077218552378456052150304677863670611408570458991015300131731261787644801415538043027268185097710615e1770",
"2.75819205688636078700279174380111581147323147951670302427494196210176478494486073721584055059489736040565979466551070179e1847",
"2.61406986804110104534167739704643351039975992759905579635058824027507742375380077276380178376470686987855503581867681046e1924",
"2.47747841124391945459619002346303925269640785743990333362087223895627681769816204236257960940497519376881830373722711456e2001",
"2.34802418757813746316913800667907927718925648696508255347624141597281474683823345136640610924639820192825966082309575303e2078",
"2.22533425939475124828943430510333464605535146852848680647615867629953075390889821397228584866395924176189346073006180260e2155",
"2.10905517593659363154553947631071808925462553114068144748077359132255993441363479041540672158497404660986163617828972963e2232",
"1.99885195510122536266653916064141606295420554580140619900425370702471778604391774578696867899999534265169574306808906810e2309",
"1.89440711840917173277691572886942144916664047407963356271198286654087884646102070148271284410118233470318337745546895603e2386",
"1.79541977639739687088375911648976940254141946934175300605485966288703931992861387257771264702798405630917098672594899744e2463",
"1.70160476180317540861346545791118106171203487587101437710693054174454895160403997508137760007058856854991413121389834429e2540",
"1.61269180804119796097157014527479883521656118500417752963675677684343588976915851637637232001139108420659882326614772004e2617",
"1.52842477060722969066998464046690349841548269556677423378408183476489015878816585045578141383463708674469365281537792914e2694",
"1.44856088916530600122626623629347336702026699647293500058111037526381692645547938577338582002157148103479049071921438452e2771",
"1.37287008819265239873777879432333192404914357037749380145412895230166352318128978403808382142784030558123748263528360645e2848",
"1.30113431416759441771790128053911040907207490879890145597562380328956450092799014856149474809345424672958343296615764490e2925",
"1.23314690739099822369963411660419632130352733806319401863570442920347696015409870236230656305563674376063778482449716744e3002",
"1.16871200663155636468514484039368694043851858077879103221831997264419096417014996945143145495038265243932745953706526253e3079",
"1.10764398487979357804590117089134596938734185016144401218934115168561552640448889215089150481162977776214124397487013110e3156",
"1.04976691458528698318220729857405616816444374000182094405930946710168752954926612218474430081526312018810817657409158490e3233",
"9.94914060836531582868347569174220216007647278536863127198023584205669825317884219144692385409156165042162234017403353704e3309",
"9.42927401023380446961314339401657458785389811652244742482194123119943160577946366372207045050095290781679375214307398844e3386",
"8.93657169598281164656322298275337750103095739790107943666668184304335665562867744740310577868880098719252549186849812451e3463",
"8.46961426624835911826517103631490619655296714141872141145089865045804196205328364155921945616925875458926717336478525196e3540",
"8.02705648870740089929294815816002943860908317454595055392168733404583122074223427054310572378841634984243492063192095337e3617",
"7.60762342267101369970765191988545810374824800500875923752736467467657167098026707905341603949108433696304383346239333297e3694",
"7.21010674617694221027190468649359000420209460539838589305387835463807416706224777302997789297329446308541513638035437482e3771",
"6.83336127500041943234365059231968669406267422759442985746460610830503287734479988530512309065240678799786759250323660701e3848",
}};
const T pi = static_cast<T>("3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609");
for (unsigned k = 0u; k < static_cast<unsigned>(std::tuple_size<table_data_array_type>::value); ++k)
{
T val = exp(sqrt((pi * (100u * k)) * (100u * k)));
T e = relative_error(val, T(table_data[k]));
unsigned err = e.template convert_to<unsigned>();
if (err > max_err)
{
max_err = err;
}
val = exp(-sqrt((pi * (100u * k)) * (100u * k)));
e = relative_error(val, T(1 / T(table_data[k])));
err = e.template convert_to<unsigned>();
if (err > max_err)
{
max_err = err;
}
}
std::cout << "Max error table_data was: " << max_err << std::endl;
#if defined(BOOST_INTEL) && defined(TEST_FLOAT128)
BOOST_TEST(max_err < 40000);
#elif defined(TEST_CPP_BIN_FLOAT)
BOOST_TEST(max_err < 6200);
#else
BOOST_TEST(max_err < 5000);
#endif
} // (std::numeric_limits<T>::max_exponent10 > 4000)
using std::ldexp;
using exact_data_pair_type = std::array<T, 2>;
using exact_data_array_type = std::array<exact_data_pair_type, 12>;
static const exact_data_array_type exact_data =
{{
{{ldexp(1.0, -50), static_cast<T>("1.000000000000000888178419700125626769357944978675730736309709508287711059579809241499236575743374705946980126761002249532899810120773330275600867188192232364653350140592709328919189811425580736404494785")}},
{{ldexp(1.0, -20), static_cast<T>("1.00000095367477115374544678824955687428365188553281789775169686343569285229334215539516690752571791280462887427635269562079697496032436580742164524046357050365736415701568566320292733574692386949329504")}},
{{ldexp(1.0, -10), static_cast<T>("1.00097703949241653524284529261160650646585162918174419940186408264916250428896869173656853690882467186075613761065459260696969179898943231122954769049191889764955875334240964352999872451396042953452219")}},
{{0.25, static_cast<T>("1.28402541668774148407342056806243645833628086528146308921750729687220776586723800275330641943955356890166283174967968730585475423604648842750177989872959231004569930548795441439028562847893962382677678")}},
{{0.5, static_cast<T>("1.64872127070012814684865078781416357165377610071014801157507931164066102119421560863277652005636664300286663775630779700467116697521960915984097145249005979692942265909840391471994846465948924489686891")}},
{{0.75, static_cast<T>("2.11700001661267466854536981983709561013449158470240342177913303081098453336401282000279156026661579821888590471901551426235852033897220601942873096478507538156877637403469865756763918374951675146515683")}},
{{10, static_cast<T>("22026.4657948067165169579006452842443663535126185567810742354263552252028185707925751991209681645258954515555010924578366524232916065228951662224801377289728734855778378472751954806100958814170558886579")}},
{{10.5, static_cast<T>("36315.5026742466377389120269013166179689315579671275857607480190550842856628099187749764427758174866310742771977376827511779240563292392413797025035252944088473059613508585937585174897482367249804575829")}},
{{25, static_cast<T>("7.20048993373858725241613514661261579152235338133952787362213864472320593107782569745000325654258093194727871848859163683530731259683905547347259346394203424381962487428148616548084393082148632398178103e10")}},
{{31.25, static_cast<T>("3.72994612957188849046766396046821396700589012875701157893019118883826370993674081486706667149871508642909416337810227575115729423667289322729813729072376711271966343652718317681492250090327804073781915e13")}},
// N[Log[39614081257132168796771975168], 201]
{{static_cast<T>("65.8489821531948043946370515385267739671725127642242491414646009018723940871209979825570160646597753164901406969542151447001244223970224029181037214053322163834191192286952863430791686692697089797567183"), static_cast<T>("39614081257132168796771975168.0")}},
// N[Log[19807040628566084398385987584], 201]
{{static_cast<T>("65.1558349726348590852198194170685973990970126298639938873439208923790004651513032669511527376633566289481392159336444589664389021612642723610710506536971404214883916578669149078888616306458173062855949"), static_cast<T>("19807040628566084398385987584.0")}},
}};
max_err = 0;
for (unsigned k = 0u; k < static_cast<unsigned>(std::tuple_size<exact_data_array_type>::value); ++k)
{
T val = exp(exact_data[k][0]);
T e = relative_error(val, exact_data[k][1]);
unsigned err = e.template convert_to<unsigned>();
if (err > max_err)
{
max_err = err;
}
val = exp(-exact_data[k][0]);
e = relative_error(val, T(1 / exact_data[k][1]));
err = e.template convert_to<unsigned>();
if (err > max_err)
{
max_err = err;
}
}
std::cout << "Max error exact_data was: " << max_err << std::endl;
BOOST_TEST(max_err < 60);
BOOST_IF_CONSTEXPR (!boost::multiprecision::is_interval_number<T>::value)
{
std::mt19937_64 gen { };
gen.seed(static_cast<typename std::mt19937_64::result_type>(std::clock()));
std::uniform_real_distribution<float>
dist
(
static_cast<float>(1.01L),
static_cast<float>(1.04L)
);
for (int index = 0; index < 8; ++index)
{
static_cast<void>(index);
const T val_zero { ::my_zero<T>() * dist(gen) };
const T exp_zero = exp(val_zero);
BOOST_CHECK(exp_zero == ::my_one<T>());
}
BOOST_IF_CONSTEXPR (std::numeric_limits<T>::is_specialized)
{
for (int index = 0; index < 8; ++index)
{
static_cast<void>(index);
const T val_one(static_cast<int>(::my_one<T>() * dist(gen)));
const T exp_one = exp(val_one);
BOOST_CHECK_CLOSE_FRACTION(exp_one, boost::math::constants::e<T>(), std::numeric_limits<T>::epsilon() * 4);
}
}
T bug_case = -1.05 * log((std::numeric_limits<T>::max)());
for (unsigned i = 0U; bug_case > -20 / std::numeric_limits<T>::epsilon(); ++i, bug_case *= 1.05)
{
static_cast<void>(i);
BOOST_IF_CONSTEXPR (std::numeric_limits<T>::has_infinity)
{
BOOST_CHECK_EQUAL(exp(bug_case), 0);
}
else
{
BOOST_CHECK_LE(exp(bug_case), (std::numeric_limits<T>::min)());
}
}
BOOST_IF_CONSTEXPR (::has_poor_exp_range_or_precision_support<T>::value)
{
bug_case = log(T(1) / (std::numeric_limits<T>::min)()) / -1.0005;
}
else
{
bug_case = log((std::numeric_limits<T>::max)()) / -1.0005;
}
for (unsigned i { 0U }; i < 20U; ++i, bug_case /= static_cast<T>(1.05L))
{
static_cast<void>(i);
BOOST_CHECK_GE(exp(bug_case), (std::numeric_limits<T>::min)());
}
}
}
int main()
{
#ifdef TEST_BACKEND
test<boost::multiprecision::number<boost::multiprecision::concepts::number_backend_float_architype> >();
#endif
#ifdef TEST_MPF_50
test<boost::multiprecision::mpf_float_50>();
test<boost::multiprecision::mpf_float_100>();
#endif
#ifdef TEST_MPFR_50
test<boost::multiprecision::mpfr_float_50>();
test<boost::multiprecision::mpfr_float_100>();
#endif
#ifdef TEST_MPFI_50
test<boost::multiprecision::mpfi_float_50>();
test<boost::multiprecision::mpfi_float_100>();
#endif
#ifdef TEST_CPP_DEC_FLOAT
test<boost::multiprecision::cpp_dec_float_50>();
test<boost::multiprecision::cpp_dec_float_100>();
#ifndef SLOW_COMPILER
// Some "peculiar" digit counts which stress our code:
test<boost::multiprecision::number<boost::multiprecision::cpp_dec_float<65> > >();
test<boost::multiprecision::number<boost::multiprecision::cpp_dec_float<64> > >();
test<boost::multiprecision::number<boost::multiprecision::cpp_dec_float<63> > >();
test<boost::multiprecision::number<boost::multiprecision::cpp_dec_float<62> > >();
test<boost::multiprecision::number<boost::multiprecision::cpp_dec_float<61, long long> > >();
test<boost::multiprecision::number<boost::multiprecision::cpp_dec_float<60, long long> > >();
test<boost::multiprecision::number<boost::multiprecision::cpp_dec_float<59, long long, std::allocator<char> > > >();
test<boost::multiprecision::number<boost::multiprecision::cpp_dec_float<58, long long, std::allocator<char> > > >();
// Check low multiprecision digit counts.
test<boost::multiprecision::number<boost::multiprecision::cpp_dec_float<9> > >();
test<boost::multiprecision::number<boost::multiprecision::cpp_dec_float<18> > >();
#endif
#endif
#ifdef TEST_FLOAT128
test<boost::multiprecision::float128>();
#endif
#ifdef TEST_CPP_BIN_FLOAT
test<boost::multiprecision::cpp_bin_float_50>();
test<boost::multiprecision::number<boost::multiprecision::cpp_bin_float<35, boost::multiprecision::digit_base_10, std::allocator<char>, long long> > >();
#endif
#ifdef TEST_CPP_DOUBLE_FLOAT
test<boost::multiprecision::cpp_double_float>();
test<boost::multiprecision::cpp_double_double>();
test<boost::multiprecision::cpp_double_long_double>();
#if defined(BOOST_MP_CPP_DOUBLE_FP_HAS_FLOAT128)
test<boost::multiprecision::cpp_double_float128>();
#endif
#endif
return boost::report_errors();
}
template<typename FloatType> auto my_zero() -> FloatType&
{
using float_type = FloatType;
static float_type my_val_zero(0);
return my_val_zero;
}
template<typename FloatType> auto my_one() -> FloatType&
{
using float_type = FloatType;
static float_type my_val_one(1);
return my_val_one;
}
|