File: benchmark_fstream.cpp

package info (click to toggle)
boost1.90 1.90.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 593,120 kB
  • sloc: cpp: 4,190,908; xml: 196,648; python: 34,618; ansic: 23,145; asm: 5,468; sh: 3,774; makefile: 1,161; perl: 1,020; sql: 728; ruby: 676; yacc: 478; java: 77; lisp: 24; csh: 6
file content (286 lines) | stat: -rw-r--r-- 9,494 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//
// Copyright (c) 2012 Artyom Beilis (Tonkikh)
// Copyright (c) 2019 - 2020 Alexander Grund
//
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt

#define BOOST_NOWIDE_TEST_NO_MAIN

#include <boost/nowide/convert.hpp>
#include <boost/nowide/cstdio.hpp>
#include <boost/nowide/fstream.hpp>
#include <algorithm>
#include <chrono>
#include <cstdio>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <random>
#include <stdexcept>
#include <vector>

#include "test.hpp"

template<typename Key, typename Value, typename Key2>
Value get(const std::map<Key, Value>& map, const Key2& key)
{
    typename std::map<Key, Value>::const_iterator it = map.find(key);
    if(it == map.end())
        throw std::runtime_error("Key not found");
    return it->second;
}

namespace nw = boost::nowide;
template<typename FStream>
class io_fstream
{
public:
    explicit io_fstream(const char* file, bool binary, bool read)
    {
        auto mode = read ? std::fstream::in : std::fstream::out | std::fstream::trunc;
        if(binary)
            mode |= std::fstream::binary;
        f_.open(file, mode);
        TEST(f_);
    }
    // coverity[exn_spec_violation]
    ~io_fstream()
    {
        f_.close();
    }
    void write(const char* buf, int size)
    {
        TEST(f_.write(buf, size));
    }
    void read(char* buf, int size)
    {
        TEST(f_.read(buf, size));
    }
    void rewind()
    {
        f_.seekg(0);
        f_.seekp(0);
    }
    void flush()
    {
        f_ << std::flush;
    }

private:
    FStream f_;
};

#include <cerrno>

class io_stdio
{
public:
    io_stdio(const char* file, bool binary, bool read)
    {
        const char* mode = read ? "r" : "w+";
        if(binary)
            mode = read ? "rb" : "wb+";
        f_ = nw::fopen(file, mode);
        TEST(f_);
    }
    ~io_stdio()
    {
        std::fclose(f_);
        f_ = 0;
    }
    void write(const char* buf, int size)
    {
        TEST_EQ(std::fwrite(buf, 1, size, f_), static_cast<size_t>(size));
    }
    void read(char* buf, int size)
    {
        TEST_EQ(std::fread(buf, 1, size, f_), static_cast<size_t>(size));
    }
    void rewind()
    {
        std::rewind(f_);
    }
    void flush()
    {
        std::fflush(f_);
    }

private:
    FILE* f_;
};

#if defined(_MSC_VER)
extern "C" void _ReadWriteBarrier(void);
#pragma intrinsic(_ReadWriteBarrier)
#define BOOST_NOWIDE_READ_WRITE_BARRIER() _ReadWriteBarrier()
#elif defined(__GNUC__)
#if(__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) > 40100
#define BOOST_NOWIDE_READ_WRITE_BARRIER() __sync_synchronize()
#else
#define BOOST_NOWIDE_READ_WRITE_BARRIER() __asm__ __volatile__("" : : : "memory")
#endif
#else
#define BOOST_NOWIDE_READ_WRITE_BARRIER() (void)
#endif

using blocksize_to_performance = std::map<size_t, double>;

struct perf_data
{
    // Block-size to read/write performance in MB/s
    blocksize_to_performance read, write;
};

std::vector<char> get_rand_data(int size, bool binary)
{
    std::mt19937 rng{std::random_device{}()};
    auto distr = (binary) ? std::uniform_int_distribution<int>(std::numeric_limits<char>::min(),
                                                               std::numeric_limits<char>::max()) :
                            std::uniform_int_distribution<int>(' ', 'z');
    std::vector<char> data(size);
    std::generate(data.begin(), data.end(), [&]() { return static_cast<char>(distr(rng)); });
    return data;
}

static const int MIN_BLOCK_SIZE = 32;
static const int MAX_BLOCK_SIZE = 8192;

template<typename FStream>
perf_data test_io(const char* file, bool binary)
{
    namespace chrono = std::chrono;
    using clock = chrono::high_resolution_clock;
    using milliseconds = chrono::duration<double, std::milli>;
    perf_data results;
    // Use vector to force write to memory and avoid possible reordering
    std::vector<clock::time_point> start_and_end(2);
    const int data_size = 64 * 1024 * 1024;
    for(int block_size = MIN_BLOCK_SIZE / 2; block_size <= MAX_BLOCK_SIZE; block_size *= 2)
    {
        std::vector<char> buf = get_rand_data(block_size, binary);
        FStream tmp(file, binary, false);
        tmp.rewind();
        start_and_end[0] = clock::now();
        BOOST_NOWIDE_READ_WRITE_BARRIER();
        for(int size = 0; size < data_size; size += block_size)
        {
            tmp.write(&buf[0], block_size);
            BOOST_NOWIDE_READ_WRITE_BARRIER();
        }
        tmp.flush();
        start_and_end[1] = clock::now();
        // heatup
        if(block_size >= MIN_BLOCK_SIZE)
        {
            const milliseconds duration = chrono::duration_cast<milliseconds>(start_and_end[1] - start_and_end[0]);
            const double speed = data_size / duration.count() / 1024; // MB/s
            results.write[block_size] = speed;
            std::cout << "  write block size " << std::setw(8) << block_size << " " << std::fixed
                      << std::setprecision(3) << speed << " MB/s" << std::endl;
        }
    }
    for(int block_size = MIN_BLOCK_SIZE; block_size <= MAX_BLOCK_SIZE; block_size *= 2)
    {
        std::vector<char> buf(block_size);
        FStream tmp(file, binary, true);
        tmp.rewind();
        start_and_end[0] = clock::now();
        BOOST_NOWIDE_READ_WRITE_BARRIER();
        for(int size = 0; size < data_size; size += block_size)
        {
            tmp.read(&buf[0], block_size);
            BOOST_NOWIDE_READ_WRITE_BARRIER();
        }
        start_and_end[1] = clock::now();
        const milliseconds duration = chrono::duration_cast<milliseconds>(start_and_end[1] - start_and_end[0]);
        const double speed = data_size / duration.count() / 1024; // MB/s
        results.read[block_size] = speed;
        std::cout << "  read block size " << std::setw(8) << block_size << " " << std::fixed << std::setprecision(3)
                  << speed << " MB/s" << std::endl;
    }
    TEST_EQ(std::remove(file), 0);
    return results;
}

template<typename FStream>
perf_data test_io_driver(const char* file, const char* type, bool binary)
{
    std::cout << "Testing I/O performance for " << type << std::endl;
    const int repeats = 5;
    std::vector<perf_data> results(repeats);

    for(int i = 0; i < repeats; i++)
        results[i] = test_io<FStream>(file, binary);
    for(int block_size = MIN_BLOCK_SIZE; block_size <= MAX_BLOCK_SIZE; block_size *= 2)
    {
        double read_speed = 0, write_speed = 0;
        for(int i = 0; i < repeats; i++)
        {
            read_speed += get(results[i].read, block_size);
            write_speed += get(results[i].write, block_size);
        }
        results[0].read[block_size] = read_speed / repeats;
        results[0].write[block_size] = write_speed / repeats;
    }
    return results[0];
}

void print_perf_data(const blocksize_to_performance& stdio_data,
                     const blocksize_to_performance& std_data,
                     const blocksize_to_performance& nowide_data)
{
    std::cout << "block size"
              << "     stdio    "
              << " std::fstream "
              << "nowide::fstream" << std::endl;
    for(int block_size = MIN_BLOCK_SIZE; block_size <= MAX_BLOCK_SIZE; block_size *= 2)
    {
        std::cout << std::setw(8) << block_size << "  ";
        std::cout << std::fixed << std::setprecision(3) << std::setw(8) << get(stdio_data, block_size) << " MB/s ";
        std::cout << std::fixed << std::setprecision(3) << std::setw(8) << get(std_data, block_size) << " MB/s ";
        std::cout << std::fixed << std::setprecision(3) << std::setw(8) << get(nowide_data, block_size) << " MB/s ";
        std::cout << std::endl;
    }
}

void test_perf(const char* file)
{
    perf_data stdio_data = test_io_driver<io_stdio>(file, "stdio", true);
    perf_data std_data = test_io_driver<io_fstream<std::fstream>>(file, "std::fstream", true);
    perf_data nowide_data = test_io_driver<io_fstream<nw::fstream>>(file, "nowide::fstream", true);
    perf_data stdio_data_txt = test_io_driver<io_stdio>(file, "stdio", false);
    perf_data std_data_txt = test_io_driver<io_fstream<std::fstream>>(file, "std::fstream", false);
    perf_data nowide_data_txt = test_io_driver<io_fstream<nw::fstream>>(file, "nowide::fstream", false);
    std::cout << "================== Read performance (binary) ==================" << std::endl;
    print_perf_data(stdio_data.read, std_data.read, nowide_data.read);
    std::cout << "================== Write performance (binary) =================" << std::endl;
    print_perf_data(stdio_data.write, std_data.write, nowide_data.write);
    std::cout << "================== Read performance (text) ====================" << std::endl;
    print_perf_data(stdio_data_txt.read, std_data_txt.read, nowide_data_txt.read);
    std::cout << "================== Write performance (text) ===================" << std::endl;
    print_perf_data(stdio_data_txt.write, std_data_txt.write, nowide_data_txt.write);
}

int main(int argc, char** argv)
{
    std::string filename = "perf_test_file.dat";
    if(argc == 2)
    {
        filename = argv[1];
    } else if(argc != 1)
    {
        std::cerr << "Usage: " << argv[0] << " [test_filepath]" << std::endl;
        return 1;
    }
    try
    {
        test_perf(filename.c_str());
    } catch(const std::exception& err)
    {
        std::cerr << "Benchmarking failed: " << err.what() << std::endl;
        return 1;
    }
    return 0;
}